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Abstract. Regulatory T-cells (Tregs) constitute a small subset of cells that are actively involved in
maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to
play a significant role in the progression of cancer and are genera
chronic lymphocytic leukemia (CLL). Their number correlates with more aggressive disease status
and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in
Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including
multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosus,
autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are mad
aiming to develop approaches to deplete Tregs or inhibit their function in cancer and autoimmune
disorders, as well.

A Brief History. The human immune system is a well
coordinated network of cells, organs and glands acting

; Open Journal System

MEDITERRANEAN JOURNAL OF HEMATOLOGY AND INFECTIOUS DISEASES
www.mjhid.org ISSN 2035-3006

n Chronic Lymphocytic Leukemia and Autoimmune Diseases

, Barbara Vannata3, Silvia Deaglio4, Giovanna Mansueto
, Laura De Martino7, Aurelio Marandino7, Giovanni Del Poeta

Hematology, IRCCS “Centro di Riferimento Oncologico della Basilicata”, Rionero in

Hematology and Stem Cell Transplantation Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni

Hematology Institute, Catholic University of “Sacred Hearth”, Rome, Italy
Human Genetics Foundation (HuGeF) and Laboratory of Immunogenetics, University of Turin, Italy

Research and Advanced Diagnostics, IRCCS "Centro di Riferimento Oncologico della

Laboratory of Preclinical and Translational Research, IRCCS “Centro di Riferimento Oncologico della

Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Italy
Hematology Institute, “Tor Vergata” University, Rome, Italy

Dr. Giovanni D’Arena, MD. Department of Onco-Hematology, IRCCS “Centro di Riferimento
Oncologico della Basilicata”, Via Padre Pio n. 1, 85028 Rionero in Vulture (Pz), Italy. Tel

giovannidarena@libero.it

have declared that no competing interests exist.

12, 4(1): e2012053, DOI: 10.4084/MJHID.2012.053
http://www.mjhid.org/article/view/10576

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,

the original work is properly cited.

cells (Tregs) constitute a small subset of cells that are actively involved in
tolerance, in immune homeostasis and in antitumor immunity. They are thought to

play a significant role in the progression of cancer and are generally increased in patient with
chronic lymphocytic leukemia (CLL). Their number correlates with more aggressive disease status
and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in

unction may result in a plethora of autoimmune diseases, including
multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosus,
autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are mad
aiming to develop approaches to deplete Tregs or inhibit their function in cancer and autoimmune

The human immune system is a well-
coordinated network of cells, organs and glands acting

in harmony to protect the host from a broad range of
pathogenic microorganisms and, at the same time, to
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cells (Tregs) constitute a small subset of cells that are actively involved in
tolerance, in immune homeostasis and in antitumor immunity. They are thought to

lly increased in patient with
chronic lymphocytic leukemia (CLL). Their number correlates with more aggressive disease status
and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in

unction may result in a plethora of autoimmune diseases, including
multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosus,
autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made
aiming to develop approaches to deplete Tregs or inhibit their function in cancer and autoimmune

in harmony to protect the host from a broad range of
pathogenic microorganisms and, at the same time, to
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avoid responsiveness to self-antigens (immunological
self-tolerance) and to control the quality and the
magnitude of immune responses to non-self-antigens
thus avoiding damage to the host (immune
homeostasis). Several mechanisms are thought to be
involved in this complex control system (Table 1). In
this scenario, a distinct small subset of specialized T-
lymphocytes, the so-called regulatory T-cells (Tregs),
seem to play a pivotal role in maintaining homeostasis
and self-tolerance.1,2 In fact, Tregs act suppressing the
function of self-reactive T-cells to protect the host from
autoimmune disease. At the same time they seem to be
able to prevent antitumor immune responses.3

Table 1. The main mechanisms of immunological tolerance

Central tolerance Clonal deletion

Clonal anergy

Receptor editing

Peripheral tolerance Immune deviation

Suppression

Immune privilege

Network-mediated regulation

Coreceptor modulation

Gershon and Kondo of Yale University firstly
proposed the existence of T-cells with suppressive
activity more than 40 years ago.4 However, its better
identification lacked for several years and this field of
research shrank until to 1995, when Shimon Sakaguchi
and coworkers identified a population of CD4+ T-cells
expressing surface interleukin-2 (IL)-2 receptor -
chain (recognized by CD25) and termed them
‘regulatory’ T-cells.5 However, CD25 is not
exclusively restricted to Tregs because of its expression
on the surface of T effector lymphocytes after
activation.6 Baecher-Allan and co-workers, by means
of flow cytometry and in vitro study of sorted cells,
identified a very small subset of T cells with high
expression of CD25 that exhibited a strong regulatory
function in humans.7-9 CD4+CD25+high cells inhibited
proliferation and cytokine secretion by activated
CD4+CD25+ responder T-cells in a contact-dependent
manner.

In addition, it has been experimentally demonstrated
that depleting Tregs produces inflammatory bowel
disease, resulting from excessive immune response to
intestinal commensal bacteria.10 Finally, reducing or
removing Tregs leads to effective tumor immunity
leading in turn to tumor eradication.11,12

More recently, the intracellular transcription factor

forkhead/winged helix box P3 (FoxP3), also called
scurfin, has been identified as the most accepted
marker for Tregs.13-15 It functions regulating a set of
genes involved in the suppression, proliferation and
metabolic activities of Tregs. Moreover, CD127, that
identified the heterodimeric IL-7 receptor, combined
with CD4, CD25 and FoxP3, has been shown to better
identify Tregs avoiding the contamination of this small
cell population (accounting for 1-4% of circulating
CD4+ lymphocytes in humans) with activated T-
cells.16,17

Tregs and Autoimmunity. It is now clear that
dysregulation in Tregs cells may result in a plethora of
autoimmune diseases, including multiple sclerosis, type
1 diabetes mellitus, myasthenia gravis, systemic lupus
erythematosus, autoimmune lymphoproliferative
disorders, rheumatoid arthritis, and psoriasis.18

As a matter of the fact, complex genetic disorders
typically associated with the MHC chromosomal
region as well as the dysregulation of Treg cells
frequency and/or function appear to be involved in
autoimmune diseases.19 In particular, FoxP3, IL-2 and
relative receptor play a key role in the maintenance of
Tregs associated pathological immune responses.20

Deficiency in FoxP3 due to genetic mutations
results in a lethal X-linked recessive
lymphoproliferative disease in mice and human
subjects characterized by immunodysregulation,
polyendocrinopathy, enteropathy, X-linked (IPEX)
syndrome.21 This autoimmune disorder is characterized
by a severe intestinal pathology, with massive T-cell
infiltration, type 1 diabetes mellitus, eczema, anemia,
liver infiltration, thrombocytopenia, hypothyroidism,
and the presence of various autoantibodies. FoxP3
deficiency was also found in the multiple sclerosis
although Treg cells frequency was comparable with
healthy individuals.22,23 Similar results emerged in type
1 autoimmune diabetes, psoriasis, myasthenia gravis
and autoimmune polyglandular syndromes (APS).24-26

The degree of deficiency of functional anomaly of
FoxP3+ natural Tregs is able to alter the manifestation
of autoimmunity. Alterations of Tregs were also
reported in rheumathoid arthtritis and in idiopathic
juvenile arthritis. Results obtained may suggest a
possible role of Tregs in the downregulation of the
joint inflammation.27

Defining Tregs. Taken all above into account, Tregs
may be defined as a small population of T-cells with a
relevant role in the immune homeostasis. For this
reason, they are actively involved in the
immunosurveillance against autoimmune disorders and
cancer, as well. Tregs may be defined as CD4+ T-cells
expressing CD25 at high levels, cytoplasmic FoxP3,
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Figure 1. Flow cytometric detection of Tregs. Tregs are CD4+
lymphocytes displaying a CD45 expression of T-cell
subpopulations (A). CD25 antigen is expressed at high density
whereas CD127 at low to undetectable levels (B and C).Selected
CD25+/CD127+ lymphocytes are positive for CD45RO (D).

and very low to undetectable CD127 on their surface
(Figure 1). However, several other markers have been
associated to Tregs, but none of them may be
considered as a unique marker (Table 2).

Two main subsets of Tregs have been described
according to their origin. Innate (or naturally
occurring) Tregs originate in the thymus as a
consequence of the interaction with high-affinity
antigens expressed in thymic stroma and constitutively
expressing FoxP3.28 They are involved in immune
homeostatis, thus suppressing the response against self
antigens. Such cells persist throughout life despite
thymic involution after puberty. Adaptative Tregs
emerges also from the thymus but acquire its
suppressive activity in periphery regulating the
response against self and non-self-antigens.29 Figure 2
summarizes the generation and subpopulations of

Table 2. Immunophenotype of Tregs
Antigen Expression
CD4 Positive
CD8 Negative
CD25 High
CD127 Low to undetectable
FoxP3 Positive
GITR High
IL-10 Positive

TGF- Positive
CD152 (CTLA-4) High
CD154 (CD40L) Negative
CD45RA Negative
CD45RO Positive

Tregs.
Tregs have been shown to suppress the proliferation

of antigen-stimulated naïve T-cells and several
mechanisms have been suggested by means of which
they elicit their suppressive activity.30,31 Either natural
and adaptative Tregs are antigen-specific and are seen
to need T-cell receptor (TCR) triggering to become
suppressive31,32 despite this latter point is still
controversial.33,In vitro studies suggested that activated
Tregs suppress activated CD4+ or CD8+ effector T-cells
by means of cell-to-cell contact. In this mechanism a
crucial role is played by the ligation of CD80/CD86
complex on effector cells by cytotoxic T-lymphocytes
antigen-4 (CTLA-4) on Tregs surface resulting in the
transmission of inhibitory signals of T-cell
function.34,35 In a similar fashion, Tregs seem to
modulate dendritic cells (DCs) function resulting in the
expression and activation of indoleamine 2,3-
dioxygenase degradation.36 DCs may be blocked in
maturation and/or activation by release of IL-10 and
TGF- that resulting in antigen-presenting capacity
impairment due to down-regulation of major
histocompatibility complex (MHC) class II and in
interfering in costimulatory molecules expression.37,38

Other in vitro studies suggest Tregs inhibition by
means of the release of suppressive cytokines, such as
IL-10 and TGF-.39-41 Activated Tregs are capable to
express granzyme A or perforin and kill activated
CD4+ or CD8+ T-cells, through the perforin-dependent
way.42,43

Tregs and Chronic Lymphocytic Leukemia. Chronic
lymphocytic leukemia (CLL), the most common form
of leukemia in Western countries, is characterized by
the accumulation of monoclonal B-lymphocytes in
bone marrow, lymphoid organs and peripheral blood.44

Moreover, there is increasing evidence of T cell
dysfunction in CLL and this may probably contribute
to the etiology and the progression of the disease.45,46

Several authors reported that Tregs are increased in
CLL patients.47-51 Using multicolor flow cytometry, we
showed that CLL patients had a higher absolute
number of circulating Tregs compared to age and sex-
matched controls.51 In addition, Tregs cell number was
significantly correlated to more advanced Rai clinical
stages, peripheral blood B-lymphocytosis, more
elevated LDH levels, and absolute number of CD38+

neoplastic B-cells.
The evidence that Tregs are reduced after therapy with
fludarabine, agrees with the hypothesis that these cells
play a critical role in protecting CLL cells from getting
killed by the immune system.47 The same happens
when patients with CLL were treated with
thalidomide.52 This drug and its analogues, such as
lenalidomide, acts as immunomodulatory agents



Mediterr J Hematol Infect Dis 2012; 4: Open Journal System

Figure 2. Regulatory T-cells: development and subsets. Three major subjects of Tregs have been recognized so far. A) Tregs (innate and
adaptative): they express CD25, FoxP3, CTLA-4, -TCR, and secrete the immunosuppressive lymphokines IL-10 and TGF-. B) Tr1 cells:
they do not express FoxP3 nor large amount of CD25, secrete IL-10 and TGF-. Tr1 cells are abundant in the intestine where they elicit their
main function that is making tolerance to the many agents that are part of its diet. C) Th3 cells: they are also prevalent in the intestine and like
to Tr1 cells act suppressing immune responses to ingested antigens (oral tolerance) by means of TGF- secretion.

Figure 3. ROC curve graphically showing the trade-offs between
sensitivity and specificity for different cutoffs used to discriminate
between positive and negative cases (i.e., treatment demand vs no
treatment demand patients). The best predictive cutoff of
circulating Treg cell number seems to be in the range from ≥40 to 
≥42/L. The result of cutoff ≥41/L shows the best predictive
power among the others.

targeting the microenvironment and both are shown to
be effective in the treatment of CLL patients, probably

by means of TNF modulation.53-55

The prognostic role of Tregs have been poorly
investigated. Only two paper reported that a shorter
time to first treatment may be predicted by the
circulating number of Tregs.56,57 As showed in Figure
3, we found a best predictive cut-off of absolute
circulating Tregs able to identify patients with early
stage CLL at higher risk of requiring therapy.57

Finally, we have studied Tregs in ‘clinical’
monoclonal B-cell lymphocytosis (MBL), a condition
in which less than 5000/L circulating monoclonal B-
cells, in absence of other features of
lymphoproliferative disorders, is found.58 We showed
that MBL patients had a lower absolute number of
Tregs, compared to CLL patients, but higher than
controls (Figure 4).59 Taken together, these data show
that the tumor mass (from MBL low to intermediate to
high-risk CLL) and the circulating Tregs increase
simultaneously, thus suggesting that the expected result
is a more robust inhibition of tumor inhibiting cells
and, ultimately, a greater expansion of neoplastic B
cells.
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Figure 4. Circulating Tregs number in healthy subjects, MBL and
CLL patients grouped according to Rai/Binet clinical stages. Data
are expressed as mean absolute circulating Tregs number (/L) ±
standard deviations.

Conclusions. Tregs play a critical role in immune
tolerance (maintaining peripheral tolerance to self-
antigens) and in immune homeostasis (regulating the
immune response to non self-antigens). Moreover, it is
now clear that Tregs have a role in suppressing tumor-
specific immunity and for that reason are actively
involved in the etiology and in progression of cancer,
such as CLL, the most frequent form of leukemia in
Western countries. Tregs disregulation is thought to be
also involved in the pathogenesis of autoimmune
disorders. In light of this, Tregs appear as having a
great potential in treating autoimmunity and cancer.
There is now considerable evidence in preclinical
models to suggest that adoptive Tregs therapy will be
highly efficacious. For that reason, clinical strategies
are developing to target such cells aiming to modulate
their suppressive function.60-65
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