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Abstract. Background: Haemoglobinopathies constitute the commonest recessive monogenic 

disorders worldwide, and the treatment of affected individuals presents a substantial global 

disease burden. β -thalassaemia is characterised by the reduced synthesis (β
+
) or absence (β

o
) of 

the β-globin chains in the HbA molecule, resulting in accumulation of  excess unbound α-globin 

chains that precipitate in erythroid precursors in the bone marrow and in the mature 

erythrocytes, leading to ineffective erythropoiesis and peripheral haemolysis. Approximately 

1.5% of the global population are heterozygotes (carriers) of the β-thalassemias; there is a high 

incidence in populations from the Mediterranean basin, throughout the Middle East, the Indian 

subcontinent, Southeast Asia, and Melanesia to the Pacific Islands. 

Aim: The principal aim of this paper is to review, from a historical standpoint, our knowledge 

about an ancient disease, the β-thalassemias, and in particular, when, how and in what way β-

thalassemia spread worldwide to reach such high incidences in certain populations. 

Results: Mutations involving the ß-globin gene are the most common cause of genetic disorders 

in humans. To date, more than 350 β-thalassaemia mutations have been reported. Considering 

the current distribution of β- thalassemia, the wide diversity of mutations and the small number 

of specific mutations in individual populations, it seems unlikely that β-thalassemia originated in 

a single place and time.  

Conclusions: Various processes are known to determine the frequency of genetic disease in 

human populations. However, it is almost impossible to decide to what extent each process is 

responsible for the presence of a particular genetic disease. The wide spectrum of β-thalassemia 

mutations could well be explained by looking at their geographical distribution, the history of 

malaria, wars, invasions, mass migrations, consanguinity, and settlements. An analysis of the 

distribution of the molecular spectrum of haemoglobinopathies allows for the development and 

improvement of diagnostic tests and management of these disorders.  
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Introduction. Haemoglobinopathies constitute the 

commonest recessive monogenic disorders 

worldwide. They fall into two main groups: the 

thalassemia syndromes and the structural 

hemoglobin variants (abnormal hemoglobins). α, 

β, and δβ thalassemias are the main types of 

thalassemia with clinical importance; the most 

frequent and clinically important structural 

hemoglobin variants are HbS, HbE, HbC and 

HbD. The treatment of patients presents a 

substantial global disease burden. 

 Variants of thalassaemias and main abnormal 

haemoglobins interact to produce a wide range of 

clinical disorders of varying severity.
1-3

 

Homozygotes for β-thalassemia may develop 

either thalassemia major or thalassemia 

intermedia. Individuals with thalassemia major are 

usually diagnosed within the first 2 years of life 

and require regular blood transfusions to survive.
3
 

Patients with thalassemia intermedia are diagnosed 

later and as a rule, have milder anemia and do not 

depend on transfusion for survival. 

The clinical manifestations of β-thalassemias 

are highly variable. They range from 

asymptomatic cases with mild (silent) mutations, 

to those with mild hypochromic anemia, to others 

with moderate and severe lifelong transfusion-

dependent anemia and multi organ involvement.
1
 

β-thalassemia is mainly caused by mutations 

resulting in a single nucleotide substitution, small 

deletions or insertions within the β-globin gene or 

its immediate flanking sequence and, rarely, by 

gross deletions.
2,3

 To date, more than 350 β-

thalassaemia mutations have been reported in the 

IthaGenes database.
4
 

Nearly all β-thalassemia variants are inherited 

in a Mendelian recessive manner, but there is a 

small subgroup of β-thalassemia alleles that 

behave in a dominant fashion.
1
 

The principal aim of this paper is to review, 

from a historical standpoint, our knowledge of an 

ancient disease, the β-thalassemias, and to discuss 

when, how and in what way  β-thalassemia has 

spread in the old world to reach such high 

incidences in certain populations. To this end, 

knowledge of the molecular defects that prevail in 

each country provides valuable information that 

can be used for population screening in prevention 

programmes and facilitates effective prenatal 

diagnosis.
2,3

 

 

Epidemiology and Global Burden of the 

Thalassemia Disorders. The thalassemias have a 

high incidence in a broad area extending from the 

Mediterranean basin and parts of Africa, 

throughout the Middle East, the Indian 

subcontinent, Southeast Asia, and Melanesia in to 

the Pacific Islands.
4,5

 

The carrier frequencies for β-thalassemia in 

these areas range from 1 to 20%, and rarely may 

be higher. The frequencies for the milder forms of 

-thalassemia are much greater, varying from 10 

to 20% in parts of sub- Saharan Africa, to 40% or 

more in some Middle Eastern and Indian 

populations, to as high as 80% in northern Papua 

New Guinea and some isolated groups in the 

northeast of India.
6
 

Globally, it is estimated that there are 270 

million carriers with abnormal haemoglobins and 

thalassemias, of which 80 million are carriers of β-

thalassemia. Recent surveys suggest that between 

300,000 and 400,000 babies are born with a 

serious hemoglobin disorder each year (23,000 

with β-thalassemia major) and that up to 90% of 

these births occur in low- or middle-income 

countries.
1-6

 

 

Origin, Spread and Evolutionary History of 

Beta-Globin Gene Mutations. In the major 

hemoglobinopathies, adult haemoglobin A, 

composed of two α-globin and two β-globin 

chains, is altered by genetic variants that encode 

single amino acid substitutions in β-globin (as in 

HbS, HbC, HbD and HbE) or reduced production 
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http://dx.doi.org/10.4084/MJHID.2017.018
https://creativecommons.org/licenses/by-nc/4.0
http://www.rm.unicatt.it/webmail/src/compose.php?send_to=vdesanctis%40libero.it


 
www.mjhid.org Mediterr J Hematol Infect Dis 2017; 9; e2017018                                                                Pag. 3 / 14 

 

of β-globin chains as in β-thalassaemia.
1-3 

Rarely 

do β-thalassemias result from gross β- gene 

deletion.
3
 

β-thalassaemia is characterised by the partial  

reduction of synthesis (mild=β
++

, severe=β+) or 

total reduction (β
o
), of the β-globin chains in the 

HbA molecule. This results in accumulation of 

excess, unbound α-globin chains that precipitate in 

erythroid precursors in the bone marrow and in the 

mature erythrocytes, leading to ineffective 

erythropoiesis and peripheral haemolysis.
1-3

 

While - and β- thalassemias are caused by 

more than 450 mutations, almost 1200 mutations 

have been reported that change the structure of the 

- and β-globin genes to create abnormal 

hemoglobin tetramers of HbA.
1-3 

Among this 

broad spectrum of mutations, some are very 

frequent and population specific.  

DNA haplotypes in the β-globin gene can help 

to determine the date of origin, track gene flow of 

a particular β-globin gene mutation and detect 

major migrations.  

The β
0
-39 nonsense (C→T) and the β

+ 
IVS-1-

110 (G>A) mutations are largely prevalent in the 

Mediterranean basin.
1-3 

β
+ 

IVS-1-110 is found in 

the eastern part of the Mediterranean area, 

including Turkey,
7 

Lebanon,
8 

and Egypt.
9 

The β
+ 

IVS-1-110 seems to be older than the β
0
-39 

mutation because of its nearly exclusive 

association with ancestral haplotype I.
10

 In 

addition,β
+ 

IVS-1-110, which is believed to have 

arisen in the Middle Orient and reaches its highest 

frequencies in the Eastern Mediterranean 

populations, may have been introduced to the 

other countries by a variety of settlers from the 

East. Its diffusion to the occident probably 

happened at the time of the expansion of Greek 

civilization, starting from the eighth century B.C.  

 

Most Common β-Thalassemia Variants in the 

Mediterranean Belt and Arabic Countries.  
1. Italy: In the Po Delta area (northern Italy) β

+
 

thalassemia represents approximately 50% of the 

total thalassemia major population. The production 

of β
  
globin in a β

+
 
 
homozygote and in a β 

+
, β

 
°39 

(nonsense mutation at codon 39) double 

heterozygote is approximately 20% and 10%, 

respectively, of total non- globin synthesis. This 

suggests that in the Po River Delta region the most 

common thalassemic genes are β
 
°39 and β

+
 
 
IVS-

1-110 (G>A) mutation. It is possible that IVS-1-

110 (G>A) mutation came from Greece to this 

area where Greek influence has been reported in 

the past.
11

 

On the other hand, the β
0
-39 (C>T) mutation is 

found almost exclusively in Sardinia
3
. This 

dominating mutation seems to have undergone a 

significant founder effect influence on the island. 

It is also highly prevalent in continental Italy
12

 and 

Spain
13

 and is frequently encountered in Portugal
14

 

and Tunisia.
15

 

The exclusive presence of β
0
-thalassemia type 

in southern Sardinia, which most likely arose from 

a single mutational event, is not surprising since 

Sardinia has been free from external colonisation 

for a long period of time. In fact, Greek 

colonisation was localised to the north-east of the 

island while Romans and Carthaginians settled 

only along the southern coast.
16 

Moreover, other 

populations, such as Vandals, Goths, Saracens, 

Pisans, and Spanish did not stay on the island long 

enough or in a sufficient number to modify the 

genetic structure of the autochthonous population 

significantly. The relatively high prevalence of β
+
- 

thalassemia in the northern part of the island was 

probably due to the Greek colonisation.
16,17

 

More heterogeneity is detected in Sicily, where 

there are a variety of mutations and where the 

frequency of the β
0
-39 mutation is only 37%.

17
 

 

2. Cyprus: In Cyprus, the estimated β-thalassaemia 

carrier rate is around 12–15% of the population.
18

  

The most common β-globin gene mutation is IVS-

1-110 (G> A), with a percentage of 74-80%, 

followed by three other alleles, specifically IVS-2-

745 (C> G), IVS-1-6 (T> C), IVS-1-1 (G> A), 

with frequencies of 5–8%.
19 

The presence of 

various haemoglobin variants in low prevalence, 

such as Hb S, Hb D, and Hb Lepore, is likely to be 

directly linked to the history of Cyprus, as 

archeological monuments have been found 

throughout the island  signifying  the presence for 

many years of the Greeks, Syrians, Persians, 

Arabs, Byzantines, Franks, Venetians, and 

Turks.
20

 

 

3. Greece: Greece is a country of approximately 

11 million people with a mean frequency of β-

thalassaemia carriers of 7.4%.
21

 

Extensive studies have disclosed that the 

distribution of β-thalassemia carriers is extremely 

uneven. The low fertile areas of Thessaly, Western 

Peloponnesus, and Western Epirus, as well as the 

islands of Rhodes, Lesbos, Corfu and other areas, 

http://www.mjhid.org/
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displayed frequencies of up to 15%. In contrast, in 

the high altitude areas (that were free of malaria) 

and Macedonia, the prevalence of heterozygotes 

was significantly lower.
22

 

The molecular basis of β-thalassaemia is very 

heterogeneous in Greece, and up to 30 β-

thalassaemia mutations have been observed. The 

molecular characterization of β- thalassaemia was 

evaluated in three studies on 857 thalassemia 

patients (106 with thalassaemia intermedia (TI) 

covering more than 25% of the 3,241 patients with 

TM and TI registered in 2010.
23

 

In the three studies, 27 β-thalassemia mutations 

were observed. Of interest are:  

 i) the rates of the prevalent β-thalassaemia 

mutations. In order of frequency they were: IVS-1-

110(G>A) with an incidence of 43.8%; Codon 

39(C>T), 18%; IVS-1-1(G>A), 12.7%; IVS-1-

6(T>C), 6.9%; IVS-2-745(G>A), 4.7% and IVS- 

2-1(G>A), 3%. The five mutations cover 89.1 % 

and the six 91.4% of the β-thal genes.  

(ii) the three very mild mutations (+1480 

( C>T), -101 (C>T) and + 33 C>G ) that were 

found only in TI patients covering 22% of  TI  β-

thalassaemia  mutations.
21-23

 

 

4. Turkey: The overall incidence of β-thalassemia 

trait in Turkey is 2.1% (range: 0.6-13%). At 

present, the Turkish population is about 80 

million, with 1.6 million people with thalassemia 

trait and about 5500 patients with homozygous 

thalassemia and other hemoglobinopathies.
24

 

By April 1999, the total number of β-

thalassemia alleles described in the Turkish 

population was ~40, and this number can be 

considered as a testimony of past settlements in 

Asia Minor.
23 

The most frequent thalassemia allele 

in the Turkish population is IVS-I-110 (G>A) 

mutation (40%), being the most common 

thalassemia mutation in the majority of the high 

risk regions of the Mediterranean area. The other 

common mutations in Turkey are: IVS-1-6(T>C), 

FSC-8(-AA), IVS-1-1(G>A), IVS-2-745(G>A), 

Cd39 (C>T), -30 (T>A) and FSC-5 (-CT). 

Malarial selection for the oldest β-thalassemia 

allele in Anatolia (i.e., IVS-1-110 G>A) may have 

occurred between 6,500 and 2,000 BC. Since then, 

Arab, Byzantine, Sumerian, Hittite and Turkish 

societies have played an important role in the 

history of the country, leading to a complex ethnic 

structure.  

Currently, the minority of the population living 

in Adana and Mersin, in southern Turkey, is of 

Arab and African origin, and are known as “Eti-

Turks”, whose ancestors immigrated from Syria 

and Egypt centuries ago. From that date on, most 

of the common β-thalassemia mutations in Turkey 

were established, and by the 13th century A.D., 

most of them were present at frequencies close to 

those7% observed today.
25,26 

Turkey's large 

molecular heterogeneity can be explained by its 

unique geographical position and rich history, an 

important crossroad between cultures, 

civilizations, and continents for several centuries.  

The three most prevalent mutations include: 

IVS-1-110 (G>A): 39.5%, IVS -1-6 (T>C):10.1% 

and FSC -8 (-AA): 5.5%.  

 

5. Arab populations. The standard definition of the 

Arab world includes the 22 states and territories 

from the Atlantic Ocean in the west to the Arabian 

Sea in the east, and from the Mediterranean Sea in 

the north to the Horn of Africa and the Indian 

Ocean in the southeast. It has a combined 

population of around 350 million people, one third 

of who are under 15 years of age. β-thalassemia is 

encountered in polymorphic frequencies in almost 

all Arab countries with carrier rates ranging from 1 

to 11%.
27

 

Various papers reporting the spectrum of β-

thalassemia mutations in different Arab countries 

have been published.
28-46 

However, data for some 

countries is still lacking or only preliminary.  

The spectrum of β-thalassemia mutations in the 

Arab populations has been extensively reported by 

Zahed in 2001,
41 

Tadmouri in 2003
42 

Haj Khelil in 

2010
40 

and Hamamy in 2013.
27

 

The number of mutations detected in each 

population varies depending on its origin and 

interaction with other populations as well as the 

methods used for characterisation.
27-43

 

Among Arabs, the heterogeneity of these 

mutations varies from 44 different mutations in 

UAE to 10 in Eastern Saudi Arabia. The most 

widespread and common mutation among Arabs is 

IVS-1-110 (G>A). The latter mutation has its 

highest prevalence in Cyprus and Greece 

suggesting that it may be of Greek origin. In the 

Eastern Arabian Peninsula, the Asian Indian 

mutations (IVS-1-5 (G>C), codons 8/9 (+G) and 

IVS-1 (−25 bp del) are more common.
27

 

Although β-thalassemia mutations reported are 

mainly of Mediterranean and Asian origin, some 

http://www.mjhid.org/
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countries have unique mutations, e.g. Hb Dhofar 

in Oman.
29 

Codon 39 (C>T) has been found in all 

Arab countries without exception. IVSI-110 

(G>A), the most common mutation, has rates of 

12%–38% in Arab countries of the eastern 

Mediterranean but reaches lower frequencies in 

countries around the Gulf (0%–2%). IVS-2-1 

(G>A) has been detected in all countries except 

Tunisia and Algeria. The highest frequency has 

been reported in North Jordan (20%) (IVS-2-1)
43 

and in Kuwait.
44

 

The most widespread and common mutations 

are presumably the oldest. Codon 39 (C>T) is 

believed to be of Roman origin, and IVS-1-110 is 

believed to have arisen in Turkey. It reaches its 

highest frequency in the Eastern Mediterranean 

Arab countries and may have been introduced to 

other countries by a variety of settlers from the 

East, including Turks, Greeks, or Phoenicians.
41

 

a. Egypt: Egypt is divided into three main 

geographical regions: the Nile Valley, the Eastern 

desert and the Western desert. The Nile Valley 

represents 4% of the area of Egypt and is divided 

into Upper Egypt, Lower Egypt, Suez Canal, and 

Northern coast lakes regions.  

Cairo’s population has risen to more than 18 

million (the highest population density in Egypt).  

Egyptians are mainly descended from ancient 

Egyptians (94%). Ethnic minorities in Egypt 

include Nubians, Berbers, Bedouin Arabs, Beja 

and Dome (4%) and others (2%). The position of 

Egypt in the center of the Middle East, contiguous 

with the Mediterranean countries, has facilitated 

genetic admixture of Egyptians with several 

populations of diverse geographic and ethnic 

origins.
35

 

El-Hashemite et al. reported that of 1.5 million 

annual live births, approximately 1000 babies are 

born with β -thalassemia major. The most common 

mutations in Egyptian children with  β -

thalassemia are IVS-1-110(G>A) 48%, IVS-1-6 

(T>C) 40%, IVS-1-1(G>A) 24%, IVS-1-5(G>C) 

10%, IVS-2-848 (C>A) 9%, IVS-2-745(C>G) 8%, 

IVS-2-1(G>A) 7%.
35

 

b. Oman: The nature of the β- thalassaemia 

mutations that have been determined in the Omani 

population suggests that the majority have been 

introduced by gene flow. There was active 

commerce between Oman and the area around the 

Indus Valley for centuries. Burial sites and pottery 

dating to around 3,000 B.C. have also been 

unearthed in the surrounding Gulf countries. Using 

archaeological data from all these various sites it 

has been possible to establish that there was trade 

between Mesopotamia (present day Iraq), the 

lands bordering the Arabian Gulf and the Indus 

Valley peoples. Historically, Oman was a major 

maritime nation with links to the Far East and 

India on the one hand and East Africa and Egypt 

on the other, as well as trade in the Arabian Gulf. 

IVS-1-5 (G>C), a severe β
+
 allele, is the most 

prevalent of the mutations thus far described in 

Oman. A detailed analysis of the distribution of β-

thalassaemia mutations in Pakistan shows that the 

IVS I-5 (G>C) mutation is widespread in that 

country, reaching a peak incidence in the Baluchis 

(76.2%) and having a high prevalence among the 

Sindhis (43.9%). It is also found at a high 

frequency in India.
27,29

 

Other common β-thalassemia alleles common 

in Oman are the codon 44 (-C) (frequent in Iraq),
37

 

IVS-1-3’ –25bp (epicentre Bahrain),
34

 IVS-2-1 

(G>A) (Indian subcontinent)
47 

mutations, and the 

619bp deletion at the 3’ end of the beta globin 

gene (Indian subcontinent),
47 

all of which almost 

certainly were introduced to Oman through gene 

flow.  The only mutation unique to Oman is Hb 

Dhofar, which has originated in the southern 

region of the Sultanate and thus far has only been 

described in Omanis.
29

 

c. Qatar: Qatar is a peninsula bordering the 

Arabian Gulf and Saudi Arabia. The country’s 

population has been roughly split with 20% native 

Qatari, largely tribal, and 25% other Arabs from 

Egypt, Syria, Iraq, Lebanon, Yemen, Palestine, 

and Jordan. The rest of the population (55%) 

consists of expatriate workers from the East and 

the West.  

Qatar’s history is very rich indicating the 

various phases that led to the ultimate 

development of the present State. The first trace of 

human settlements was found in the Qatar 

peninsula around 4,000 B.C. At the beginning of 

the 16th century, Qatar fell under the control of the 

Portuguese who were successful in establishing 

their control in many parts of the Arabian 

Peninsula. Later, the Ottomans ruled Qatar for 

four centuries.  

The frequency of β-thalassemia heterozygotes 

is estimated to be 2-3%. Al-Obaidli et al. analyzed 

the molecular basis of β-thalassemia in Qatar. 

They found the most common mutant alleles were 

IVS-1-5 (G>C) and codon 8/9 (+G), representing 

35.4% and 26.1% of the total, respectively. Most 

http://www.mjhid.org/
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of these two mutations are homozygous, probably 

because of the high rate of consanguinity. The 

frequencies of three other common mutant alleles, 

IVS-2-1 (G>A), 25bp deletion and IVS-1-110 

(G>A) are higher in surrounding locations, such as 

Southern Iran, Kuwait, eastern Saudi Arabia and 

Bahrain.
38

 

Recently, a novel β-thalassemia deletional 

variant allele in an ethnic Qatari patient was 

reported. The deletion spans exon 1, the entire 

intron 1 and the first two bases of exon 2 causing a 

frameshift and the premature appearance of a stop 

codon. The presence of this novel deletional allele 

in a compound heterozygous state with a non-

deletional allele is alarming in a diagnostic setting, 

especially in the absence of family studies.
39

 

 

6. Iran: Iran, centrally located in the Asian 

continent, has served for centuries as a gateway 

for movement of human populations across 

diverse spheres of Asia and Europe. The Iranian 

population consists of diverse ethnic and linguistic 

groups namely Arabs, Armenians, Assyrians, 

Azeris, Baluchis, Gilaks, Mazandarani, Kurds, 

Lurs, Persian, Turkmen, and Zoroastrians. 

In the eastern Mediterranean region, Iran is one 

of the major centers for the prevalence of β-

thalassemia. Due to the high consanguinity in the 

population, it is estimated that there are more than 

three million β-thalassemia carriers (4-8%) and 

20,000 patients.  

The gene frequency of β-thalassemia is high 

and varies considerably between areas, with 

double the country average rate in Mazandaran, 

Sistan and Baluchistan, Fars, Hormozgan, and 

Kerman provinces and half the average country 

rate in provinces of Tehran, East Azerbaijan, 

Khorasan, Hamedan, Yazd and West Azerbaijan. 

There are more than 47 different β-globin gene 

mutations. Among them, the most common is 

IVS-2-1 (G > A; beta
0
)  mutation, followed in 

decreasing order of frequency by  IVS-1-5 (G > C, 

beta
+
),  codons 8/9 (+G, beta

0
),  IVS-1-110 (G > 

A, beta
+
),  IVS-1-1(G > A, beta

0
), 25 bp deletion 

(beta
0
),  IVS-I-6 (T > C, beta

+
), codon 5 (-CT, 

beta
0
), and codon 39 (C >T, beta

0
) mutations.

46 
It 

seems that codons 8/9 (+G) might reflect two 

historical events:  one connected to the secular 

trade along the great Silk Road which extends 

from Xian in China through the Indian 

subcontinent to Iran and the Eastern 

Mediterranean and the other to the invasion of the 

Mongols (1,220 A.D.) and the Tatars (1,380–87 

A.D.). The prevalence of codon 8/9 (+G) in the 

Northeast of Iran, and toward the center and 

northwest, may be related to the Oghuz Turks who 

migrated there from central Asia.
48

 

 

From extensive studies on the geographical 

distribution of the molecular basis of β-

thalassemia, it has been shown that, despite the 

wide spectrum of mutations, the number of 

prevalent molecular defects for each population is 

limited.  

The information provided in Table 1 is derived 

from published reports. The reported data often do 

not represent the entire population. Therefore, 

each single publication should be judged and used 

according to its merits, including sample size, the 

population group studied, geographical location 

within a country, and methodology used. A 

complete updated list of β-thalassemia variants is 

available through the Globin Gene Server Web 

Site (http://www.globin.cse.psu.edu). 

 

The Phylogeography and Phytogeographic 

Brief History of People in Ancient Times. 

Genetic data on living human populations have 

been used to reconstruct the evolutionary history 

of the human species by considering how global 

patterns of human variation could be produced, 

given different evolutionary scenarios. Various 

processes (selection, mutation, migration and 

genetic drift) are known to determine the 

frequency of genetic diseases in human 

populations, but so far it has proved almost 

impossible to identify to what extent each process 

is responsible for the presence of a particular 

genetic disease.
49-54 

The most controversial issue at present is 

exactly when and how these anatomically and 

genetically modern populations first spread from 

Africa to other parts of Asia and Europe. There are 

two main possibilities. The first is that the initial 

expansion occurred via North Africa and the Nile 

valley, with subsequent dispersals to the west into 

Europe and to the east into Asia.
50-54 

The second is 

that the initial dispersal was from Ethiopia, across 

the mouth of the Red Sea, and then either 

northward through Arabia or eastward along the 

south Asian coastline to Australasia,.
55,56 

The 

strongest evidence at present for the second 
 

http://www.mjhid.org/
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Table 1. The distribution of β-thalassemia variants in other countries. 

Country Mutations References 

Eastern 

Province of Saudi 

Arabia 

IVS-2-1 (G>A)  (27.5%); IVS-1-5 (G>C) (23.2%); codon 39 (C>T) 

(20.3%); IVS-1-1 (G> A) (5.8%); IVS-1-25 bp (4.4%)  and codon 44(-C)  

Al-Ali AK et al. J Biomed Biotechnol. 

2005:4:322–5 

Iraq 

IVS-2-1 (G>A) (28.7%); IVS-1-1(G>A) (17.7%); codon 8 (−AA) 

(9.1%); codon 8/9 (9.1%); codon 39 (C>T) (9.1%); codon 44 (-C) (8.3%) 

and codon 5 (-C) (6.3%) 

Al-Allawi NA et al. Mol Biol Int. 2010; 

Article ID 479282 

Jordan 

IVS-1-110 (G>A) (25%), IVS-2-1 (G>A) (15%), IVS2-745 (C>G) 

(14.2%), IVS-1-1 (G>A) (10%), IVS-1-6 (T>C) (8.3%), codon 37 (G>A) 

(6.3%), codon 39 (C>T) (4.6%), and codon 5 (-C) (3.8%) 

Sadiq MF et al.Am J Hematol. 

2001;68:16-22. 

Kuwait IVS-2-1 G>A and IVS-1-6 T>C accounted for 63.9% of all mutations. 
Adekile A et al. Med Princ Pract 

2005;14(suppl 1):69–72 

Morocco  

β0 39 (C>T); β0 Fs CD 8 (−AA); β+ IVS-1-6 (T>C) and β0 IVS-1-1(G>A); 

β0 FsCD6 (−A) and  β+ 29 (A>G) cap site account for 75% of the 86 

independent β  thal chromosomes studied 

Lemsaddek W et al. Am J Hematol. 

2003; 73:161–8  

Syria 

IVS-1-110 (G>A) (17.0%), IVS-1-1 (G>A) (14.7%), codon 39 (C>T) 

(14.4%), IVS-2-1 (G>A) (9.8%), codon 8 (-AA) (6.2%), IVS-1-6 (T>C) 

(5.2%), IVS-1-5 (G>C) (4.9%) 

Jarjour RA et al.Hemoglobin. 

2014;38:272-6 

Azerbaijan 
Three mutations (codon 8-AA, IVS-2-1(G>A) and IVS-1-110 (G>A) 

account for over 80% of thalassaemia genes 

Kuliev AM et al. J Med Genet.1994;31: 

209-12. 

Bulgaria 

The codon 39 (C>T) and IVS-1-110 (G>A) mutations occur most 

frequently, and seven additional mutations are observed with a frequency 

from 2.4% to 14.2% 

Petkov GH and Efremov GD. 

Hemoglobin. 2007;31:225-32. 

Lebanon  

IVS-1-110 (G>A) (34.2%); IVS-1-1 (G>A) (15%); IVS-1-6 (T>C) 

(14.4%); cd 29 (C>T) (9.6%); IVS-2-1 (G>A) (8.6%) and cd 5 (−CT) 

(5%) 

Makhoul NJ et al. Ann Hum 

Genet.2005; 69:55–66 

Romania 
IVS-1-110 (G>A) (31.2%); cd 39 (C>T) (25%); IVS-2- 745 (C>G) 

(15.6%); IVS-1-1 (G>A) (12.5%)  

Talnaci R et al. J. Cell Mol Med. 2004; 

8: 232-40 

Serbia and 

Montenegro 

Codon 39 (C>T), IVS-1-110 (G>A), IVS-2-745 (C>G), codon 44 (-C), -

87 (C>G), IVS-2-1 (G>A), IVS-1-6 (T>C), IVS-1-1 (G>A) 

Pavlovic S  et al. Acta Haematol. 

2005;113:175-80 

Spain 
IVS-1-1 (G>A), IVS-1-6 (T>C), IVS-1-110 (G>A), codon 39 (C>T), 

codons 8/9 (+G) 

Villegas A et al. Hemoglobin. 2001; 25: 

273-83. 

 

hypothesis is provided by the mtDNA lineage- 

analysis patterns.
50,51 

This model would mean that 

modern populations in southwest Asia and Europe 

must have reached these areas substantially later, 

via western or central Asia.
51 

Why did modern human populations disperse 

from Africa ca. 60,000 years ago?  

Childe
57 

suggested that, after the glaciations, 

North Africa and South-west Asia became drier 

and humans began to aggregate in areas where 

water was available. 

The hypothesis of Childe on the role of the 

Younger Dryas (a geological period from c. 

12,900 to c. 11,700 calendar years ago, 

characterized by a cool and dry climate) which 

was contemporary with the beginning of 

cultivation (c. 10,000 B.C.) in the region, is 

supported by recent studies from ancient sites of 

the Middle Euphrates region.
58-61

 

These suggest that the world’s first civilization 

emerged in the late fourth millennium B.C. in 

southern Iraq, developing urban centers situated 

along the banks of the Tigris and Euphrates Rivers 

(Mesopotamia). This area, a small region of south-

east Turkey and north-east Syria around the 

Middle Euphrates, might be the cradle of wheat 

agricultural innovation.
62-66

 

After domestication, free-threshing wheat 

spread west through the Mediterranean basin, 

reaching its western edge by 5,000 B.C.
67,68

. 

Between 2,000 B.C. and 1,100 A.D., Anatolia 

served as the ground for several civilizations 

(Hittite, Persian, Greek, Roman, Byzantine, and 

Seljuk), resulting in an intensive flow of mutations 

into and out of present-day Turkey. Before 

reaching the Western Europe, agriculture spread in 

Greece during 4
th

 millennium B.C.; it is possible 

that during that period Greece was one of the most 

malarious regions of the Mediterranean.
69,70

 

During the 8
th

 century B.C. the Greeks arrived 

in Italy. They came from Euboea, Argolis, Locris, 

Crete and the Aegean islands, settling on the 

southern coasts (from Campania to Apulia) and 

eastern and southern Sicily. They founded many 

prosperous colonies whose economy was 

generally based on agriculture and commerce.  

It is possible that thalassemia existed among 

Sicily's native populations (Lymians, Sicanians, 

and Sicels) before that time, as it is postulated that 

some of these earlier inhabitants migrated to Sicily 

http://www.mjhid.org/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Al-Allawi%20NA%5BAuthor%5D&cauthor=true&cauthor_uid=22110956
https://www.ncbi.nlm.nih.gov/pubmed/?term=ThalassemiaMajor+Patients+in+Northern+Iraq++and+nasir
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sadiq%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=11559932
https://www.ncbi.nlm.nih.gov/pubmed/11559932
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jarjour%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=24828949
https://www.ncbi.nlm.nih.gov/pubmed/24828949
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kuliev%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=8014969
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https://www.ncbi.nlm.nih.gov/pubmed/?term=Pavlovic%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15870487
https://www.ncbi.nlm.nih.gov/pubmed/15870487
https://www.ncbi.nlm.nih.gov/pubmed/11570720
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from the eastern Mediterranean, albeit probably 

before 4,000 B.C. A further historical influx of the 

thalassemia genes may be associated with mass 

immigration of the Saracens (Arabs) in the ninth 

and tenth centuries, as this population had a strong 

Middle-eastern Semitic component. 

Silvestroni and Bianco recorded a very high 

percentage of β-thalassemia trait in people 

originating from the area of the Po River’s delta 

(Upper Adriatic): 10% in Ferrara, 16% in 

Codigoro and 12% in Pomposa. These towns in 

the past were in direct connection to the important 

Greek emporium of Spina through an ancient 

branch of the Po River.
71 

Spina was a commercial 

port founded at the beginning of the 6th century 

B.C. by Etruscans. Because of its location, along 

the Po River delta,  the port became an ideal 

community to facilitate trade with the Greeks. The 

port was abandoned towards the end of the 3
rd

 

century B.C.
71

 

The expansion of the Ottoman Empire (15
th

 and 

16
th

 centuries) towards Eastern Europe, Northern 

Africa, and Central Asia permitted further spread 

of  β-thalassemia mutations in and out of Anatolia 

making it a melting-pot of a large number of 

alleles. The migration of many Muslim groups 

living in former Turkish territories in Southeastern 

Europe during the decline of the Ottoman Empire 

(starting from 1914 AD) contributed more to the 

racial mixture (i.e., the introduction of IVS-2-745, 

-87, IVS-2-654).
24-26

 

 

Factors Influencing the Global Distribution of 

Thalassemias. Several other factors have 

contributed to the global distribution of 

thalassemias. These factors include:  

 

1. The resistance to malaria: World-wide, the 

distribution of malaria and the common 

haemoglobinopathies have largely confirmed the 

close relationship between malaria and high 

prevalence of hemoglobinopathy traits (HbS and 

β-thalassemia) and G-6PD deficiency in 

populations living in highly malarious areas. 

Micro-population epidemiological surveys have 

established this association.
72,73

 

In 1948, Haldane suggested that the 

heterozygote state in β-thalassaemia provided a 

selective advantage against attack by the malarial 

parasite.
74 

This theory was based on the fact that 

homozygous beta thalassaemia results in a lethal 

condition, whereas the heterozygote only has a 

mild microcytic anaemia. If the carrier had no 

selective advantage over the normal or was less fit, 

then a very high mutation rate for beta 

thalassaemia would be required to secure 

equilibrium.   Haldane felt that the heterozygote 

was fitter than normal, and he suggested that this 

might be due to the resistance of the microcytic 

erythrocytes to attack by the malaria parasite.
74,75

 

It is not possible at this point to say exactly 

when malarial parasites evolved. Although there is 

no direct evidence as to the antiquity of malaria, 

there are many historical references to intermittent 

fevers and splenomegaly. Most authors believe 

that malaria was established in pre-historic times; 

it may have originated in tropical areas of the Old 

World, but the Pleistocene glaciations (130,000- 

10,000 years ago) delayed its spread in the 

Northern Hemisphere.
76,77

 

Until about 3,000 - 4,000 years ago population 

groups were small and isolated and infection could 

not spread easily. In addition, the vector for 

malaria, Anopheles gambiae, breeds in stagnant 

water that does not generally occur in the 

unbroken tropical rain forest. It is only when forest 

is cut down to make way for agriculture that these 

stagnant pools are found. The spread of malaria 

probably evolved with the development of tools 

during the Neolithic period (~6,000 B.C.–1,000 

B.C.), which has traditionally been associated with 

the origins of farming and more settled human 

groups.  It is possible that the infection then spread 

to most of the tropical and much of the temperate 

regions of the world.  

Genetic variants that affect the structure and 

production of the β- or α-chains of haemoglobin 

are variously associated with protection from a 

range of clinical manifestations of P. falciparum 

infection. The degree of protection varies between 

haemoglobinopathies, but in general is greatest 

against severe malaria, moderate against 

uncomplicated malaria, and absent against 

asymptomatic P. falciparum parasitaemia.
78-83 

HbS 

and to a lesser extent HbC protect from malaria 

but not from parasitaemia, suggesting that these 

haemoglobin variants prevent the transition from 

asymptomatic parasitaemia to malaria. This 

protective effect may derive from the abnormal 

display of parasite virulence factors on the surface 

of parasitized HbC and HbS erythrocytes,
78,79 

possibly owing to the disruption of the parasite’s 

remodeling of erythrocyte’s intracellular 

trafficking network by HbS and HbC.
80 

http://www.mjhid.org/
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Additionally, the age-dependent nature of malaria 

protection due to HbAS
81,82 

and α-thalassaemia
83

 

among children in recent reports support a 

protective mechanism based upon an enhanced 

acquisition of malaria immunity.  

Additional possible mechanisms for protection 

due to haemoglobinopathies include an enhanced 

clearance of parasitized erythrocytes,
84 

impaired 

parasite growth,
85 

or the induction of protective 

immunomodulatory mechanisms by parasitized 

erythrocytes.
86

 

 

2. Consanguinity: The roots of Western attitudes 

toward consanguinity extend back over 1,500 

years. Consanguineous marriage is especially 

common throughout the Eastern Mediterranean, 

Anatolia, North Africa and the Indian sub-

continent, where 25-70% of unions involve related 

family members. Religious, cultural and economic 

factors are commonly perceived reasons for such 

marriage. As a consequence, at least 8.4% of the 

world’s children have related parents. The practice 

is also accepted in South America and parts of 

sub-Saharan Africa. The highest overall 

prevalence of consanguineous unions is in poor 

rural communities, which are typified by low 

levels of maternal education, early age at marriage 

and first birth, short birth intervals, and longer 

reproductive spans.
87-89

 

 

3. Nutrition and infections: Another important 

factor is the diseases’ epidemiological transition. 

Because social and public health standards have 

gradually improved in developing countries, 

nutritional and infectious diseases are less frequent 

causes of mortality compared to the past.
1,90,91

 

Furthermore, despite premarital screening and 

prenatal diagnosis, sociocultural challenges 

(traditional customs, religious beliefs or 

superstition) especially in countries with high 

thalassemia trait populations, still impact on β-

thalassaemia major birth rates and global 

distribution of thalassemia.
91

 

 

4. Migration: The consistent multi-ethnic 

migrations of the last decades have considerably 

changed the epidemiology of hemoglobinopathies 

(Figure 1). Healthy carriers of these conditions are 

living today in many nonendemic countries, and 

severely affected children are now born in areas 

where these diseases were previously rare or 

unknown. In view of population migration, the 

distribution of the thalassemia gene appears to be 

worldwide affecting all ethnic groups except those 

originating from western, central and north 

Europe. The number of patients with 

haemoglobinopathies has been estimated to be 

almost 44,000 in the 10 EU countries, varying 

from 150 cases in Sweden to 10,500 in France.
92

 

 

Since β-thalassemia major has increased 

markedly in some European countries due to 

immigration from Africa and Asia, therefore 

national programmes of care and prevention are 

needed. Furthermore, major health organizations 

and funding agencies must support these 

initiatives.  

5. Prevention: In the late 1970s, pilot programs 

directed to prevent β-thalassemia major started in 

several at-risk populations in the Mediterranean 

area. At present, several countries have set up 

comprehensive national prevention programs, 

which include public awareness and education, 

carrier screening, and counseling, as well as 

information on prenatal diagnosis and 

preimplantation diagnosis.
3 

The efficacy of the 

prevention programmes in Italy, Cyprus, and 

Greece is reflected by the fact that the number of 

babies with thalassemia major has decreased 

substantially in the last two decades.  In Sardinia, 

for instance, the number of thalassemia major 

children born per year predicted on the basis of the 

carrier rate, assuming random mating, shows a 

reduction from 1:250 live births to 1:1660 in 2009 

with an effective prevention of 85% of the cases.
3
 

In Greece,  the  expected number of 160 annual 

births of affected newborns per 100,000 live birth 

decreased to 8 during 2005 to 2009.
5
 

 

Archeological Remains Suggestive of 

Hereditary Anemias. Besides malaria, the 

evolution of β-thalassemia has been studied from 

two other perspectives: macroscopic examination 

of archeological skeletal remains on the basis of 

bone pathology, and analysis of distribution of 

mutations in various living populations. 

Angel analysed 2334 skeletal specimens 

coming from several archaeological sites in the 

Eastern Mediterranean (in particular from Turkey, 

Greece, Cyprus, and Morocco), belonging to the 

Upper Paleolithic period to Middle Ages. He used 

bone modifications, in particular, the porotic 

hyperostosis of the skull, as a marker of 

thalassemia trait and on this basis, started 

http://www.mjhid.org/
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Figure 1. Heterogeneity of β–thalassemia mutations related to 

recent migration in France and the United Kingdom compared to 

Italy. The prevalence of the most common mutation in the country 

is shown in red  (Based on Galanello R, Eleftheriou A, Trager-

Synodinos J, Old J, Petrou M, Angastiniotis M. Prevention of 

thalassaemias and other haemoglobin disorders. Thalassemia 

International Federation [TIF] Publications.Vol 1, 2003; by 

courtesy of TIF) 

 

researching the appearance and diffusion of 

malaria and thalassemia. Porotic hyperostosis was 

classified as a thickening of the cranial vault 

caused by expansion of the diploë due to anaemia 

usually accompanied by porosity on the external 

cranial vault (cribra cranii) and often on the orbital 

roof (cribra orbitalia).
93 

Changes can be observed 

in both adults and older children and may occur in 

an active or healed condition. Healed and 

activecribra orbitalia differ by size of the affected 

bone tissue, size of the perforating lesions and 

thickness of the porous bone. 

An infant skull (2-4 months old) with porotic 

hyperostosis was found in a cemetery in the old 

city of Nicosia between two churches of the late 

Byzantine and early Frankish period (around 1,200 

A.D.) (Angastiniotis et al., unpublished data).  The 

researchers tried to isolate DNA and to identify 

mutations but even though fragmented DNA was 

isolated no mutations were found. 

Several other documented skeletal remains with 

bone pathology suggestive of β-thalassemia were 

discovered in various prehistoric sites of the world 

in areas such as Greece, Albania, Australia,
94 

the 

Middle East
95 

and Southeast Asia.
96

 

It is now it is known that porotic hyperostosis is 

not a characteristic mark of β-thalassemia, as 

Angel thought, but is an unspecific indicator of 

several diseases such as megaloblastic anaemia, 

deficiency of vitamin C and B12 and chronic iron-

deficiency anemia. These difficulties are 

characteristic of all morphological skeletal 

diagnosis of ancient diseases.
97-99

 

Rabino Massa et al. examined samples from the 

Marro Collection, belonging to the 

Anthropological and Ethnographic Museum of 

Turin, to determine the presence of malaria 

antigens. They assessed the specimens belonging 

to predynastic mummies (3,200 B.C.) from 

Gebelen excluding only the poorly conserved 

mummies. They analyzed about fifty of the 85 

individuals of this collection. In these Egyptian 

mummies, the authors detected the presence of 

malaria.
100
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The existence of a hemolytic disorder was 

observed in histological preparations of one 

individual, indicating pathological variations of 

hemoglobin. Radiographic examination confirmed 

the existence of hemoglobinopathy: in some 

mummified heads, there was the classical presence 

of "brush skulls".
101

 

Although skeletal changes are important 

additional findings for some clinical assessments, 

they cannot be used alone for diagnosis. Many 

other criteria have to be used for accurate 

diagnosis. Most recently, a variety of chemical 

methods has been used to study human bones at 

the molecular level including DNA analysis. 

In 1995, Filon et al.
 
presented the first direct 

proof of the occurrence of an inherited anemia in 

the archeological remains of a child, eight years 

old, with severe bone pathology consistent with β- 

thalassemia major. The remains came from an 

Israeli archaeological site, Akhziv, thought to date 

to the Ottoman period, sometime between the 16th 

and the 19th centuries. DNA analysis has shown 

that the child was homozygous for the frameshift 

mutation at codon 8 (-AA) as well as the variant 

(C-T) in the second codon of the β-globin gene.
102

 

Unfortunately, quantitation of aDNA templates 

was not carried out in this analysis. Quantitation of 

aDNA should be carried out in aDNA studies to 

estimate the authenticity of aDNA sequences and 

the risk of contamination with modern DNA.
103,104 

If amounts of the aDNA templates are insufficient, 

then it is possible that PCR amplifications may 

have preferentially amplified one specific allele 

(mutant codon 8) over another (normal codon 8), 

resulting in homozygous sequences. 

 

Conclusions. Ancient literature alludes to 

conditions which appear to have been caused by 

the thalassemias, but infant mortality was so high 

(from this and other causes), and so little was 

known about hemolytic disorders that the true 

causes of the thalassemic syndromes were only 

determined in the second half of the 20
th

 century, 

with a better knowledge of genetics. 

Before the advent of agriculture, roughly 5,000 

years ago, it is unlikely that humans were exposed 

to large malaria outbreaks and that this stage was 

only reached whenever Neolithic (early) farmers 

settled in mosquito-infested soft and marshy soil 

near standing water. In these surroundings young 

carriers of the thalassemias ( and β) had better 

chances than normal to survive malaria during 

infancy, and were able to reproduce and pass the 

trait to the next generation, thus increasing the 

gene frequency. The higher and varying 

distribution of certain hemoglobin disorders in 

different populations may also reflect the high 

frequency of consanguineous marriages,
105

 mass 

migration, improvement of nutritional status, 

prevention and treatment of infectious diseases, 

settlements and the strong constitutions of 

inhabitants.
96-98

 

Considering the current distribution of β-

thalassemia and the diversity of mutation patterns, 

it is unlikely that β-thalassemia originated from a 

single place and time and then spread throughout 

the rest of the malaria belt. In fact, the contiguous 

distribution of β-thalassemia, as well as other β-

globin gene mutations in localized areas of the 

world, had led to the conclusion that these 

mutations had emerged even before malaria 

became an important selective factor. 

Because hemoglobinopathies are endemic or 

have expanded following mobility flows, they are 

present in all European countries creating an 

important impact on health services
99 

that has not 

yet been effectively addressed by Member States 

Health authorities. Recent surveys suggest that 

between 300,000 and 400,000 babies are born with 

a serious hemoglobin disorder each year (23,000 

babies with β-thalassemia major) and that up to 

90% of these births occur in low- or middle-

income countries.
1-6

 

The global distribution of the various globin 

gene mutations poses a number of interesting and 

important conundrums. Nowadays, a suitable 

strategy for identifying the β-globin mutations 

calls for the knowledge of the frequency of 

mutations, common or rare, in the ethnic group of 

the individuals. 

The chronicity of the disease and the high cost of 

life-long treatment make prevention strategies 

crucial in the management of this disease. This 

requires intervention in high risk/targeted 

populations. Thanks to the implementation of 

massive prevention programs, mainly for 

thalassemia, in several countries the incidence of 

the disease has been reduced substantially, and in 

some areas, the annual rate of affected births has 

decreased by more than 90%.
105-107 
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