CURRENT STRATEGIES FOR THE DETECTION OF MINIMAL RESIDUAL DISEASE IN CHILDHOOD ACUTE LYMPHOBLASTIC LEUKEMIA

Main Article Content

Juliana Maria Camargos Rocha http://orcid.org/0000-0001-8573-6313
Sandra Guerra Xavier
Marcelo Eduardo Lima Souza
Juliana Godoy Assumpção
Mitiko Murao
Benigna Maria Oliveira

Keywords

Minimal Residual Disease, Acute Lymphoblastic Leukemia, Flow Cytometry, PCR, Gene Rearrangements of Ig/TCR

Abstract

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current treatment strategies for childhood ALL result in long term remission for approximately 90% of patients. However, therapeutic response is worse among those who relapse. Several risk stratification approaches based on clinical and biological aspects have been proposed in order to intensify treatment in patients with high risk of relapse and reduce toxicity on those with greater probability of cure.

The detection of residual leukemic cells (minimal residual disease, MRD) is the most important prognostic factor to identify high risk patients, allowing redefinition of chemotherapy. In the last decades, several standardized research protocols evaluated MRD using immunophenotyping by flow cytometry and/or real time quantitative polymerase chain reaction at different time points during treatment. Both methods are highly sensitive (10-3 a 10-5), but expensive, complex, and, because of that, require qualified staff and frequently are restricted to reference centers.

The aim of this article was to review technical aspects of immunophenotyping by flow cytometry and real time quantitative polymerase chain reaction to evaluate MRD in ALL.

 

Downloads

Download data is not yet available.


Abstract 4027
PDF Downloads 1013
HTML Downloads 4185

References

1. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A, Aricò M, Zimmermann M, Mann G, De Rossi G, Stanulla M, Locatelli F, Basso G, Niggli F, Barisone E, Henze G, Ludwig W-D, Haas OA, Cazzaniga G, Koehler R, Silvestri D, Bradtke J, Parasole R, Beier R, van Dongen JJM, Biondi A, Schrappe M. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115(16):3206-3214.
doi:10.1182/blood-2009-10-248146

2. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH, Carroll WL. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. Journal of Clinical Oncology 2012;30(14):1663-1669. DOI: 10.1200/JCO.2011.37.8018

3. Inaba H, Greaves M, Mullinghan CG. Acute lymphoblastic leukemia. Lancet 2013;381(9881):1943-1955. doi: 10.1016/S0140-6736(12)62187-4

4. Basso G, Buldini B, De Zen L, Orfao A. New methodologic approaches for immunophenotyping acute leukemias. Haematologica 2001;86(7):675-692.

5. Béné MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W, Lacombe F, Lemez P, Marinov I, Matutes E, Maynadié M, Oelschlagel U, Orfao A, Schabath R, Solenthaler M, Tschurtschenthaler G, Vladareanu AM, Zini G, Faure GC, Porwit A. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 2011;25:567-574. doi:10.1038/leu.2010.312

6. Peters JM, Ansari MQ. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch Pathol Lab Med 2011;135:44-54.

7. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999;38:139-152.

8. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354(2):166-178.

9. Bowman WP, Larsen EL, Devidas M, Linda SB, Blach L, Carroll AJ, Carroll WL, Pullen DJ, Shuster J, Willman CL, Winick N, Camitta BM, Hunger SP, Borowitz MJ. Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: results of Children`s Oncology Group Trial P9906. Pediatr Blood Cancer 2011;57:569-577. DOI: 10.1002/pbc.22944

10. Teachey DT, Hunger SP. Predicting relapse risk in childhood acute lymphoblastic leukaemia. British Journal of Haematology 2013;162:606-620. doi: 10.1111/bjh.12442

11. Campana D, Pui C-H. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995;85(6):1416-1434.

12. Dworzak MN, Panzer-Grümayer ER. Flow cytometric detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia & Lymphoma 2003;44(9):1445-1455. DOI: 10.1080/1042819031000090174

13. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, Sandlund JT, Rivera GK, Rubnitz JE, Ribeiro RC, Pui C-H, Campana D. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96(8):2691-2696.

14. Campana D. Status of minimal residual disease testing in childhood haematological malignances. British Journal of Haematology 2008;143:481-489. doi:10.1111/j.1365-2141.2008.07350.x

15. Coustan-Smith E, Ribeiro RC, Stow P, Zhou Y, Pui C-H, Rivera GK, Pedrosa F, Campana D. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006;108(1):97-102. doi:10.1182/blood-2006-01-0066

16. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, Linda S, Martin PL, Pullen DJ, Viswanatha D, Willman CL, Winick N, Camitta BM. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children`s Oncology Group study. Blood 2008;111(12):5477-5485. doi:10.1182/blood-2008-01-132837

17. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schäfer BW, Sutton R, Koehler R, Zimmermann M, Valsecchi MG, Gadner H, Masera G, Schrappe M, van Dongen JJM, Biondi A, Bartram CR. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008;22:771-782. doi:10.1038/leu.2008.5

18. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A, Parasole R, Zimmermann M, Dworzak M, Buldini B, Reiter A, Basso G, Klingebiel T, Messina C, Ratei R, Cazzaniga G, Koehler R, Locatelli F, Schäfer BW, Arico M, Welte K, van Dongen JJM, Gadner H, Biondi A, Conter V. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118(8):2077-2084. doi:10.1182/blood-2011-03-338707

19. Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E, Mullighan CG, Zhou Y, Pui C-H, Campana D. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115(23):4657-4663. doi:10.1182/blood-2009-11-253435

20. Dworzak MN, Fröschl G, Printz D, Mann G, Pötschger U, Mühlegger N, Fritsch G, Gadner H. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002;99(6):1952-1958. doi:10.1182/blood.V99.6.1952

21. Béné MC, Kaeda JS. How and why minimal residual disease studies are necessary in leukemia: a review from WP10 and WP12 of the European LeukemiaNet. Haematologica 2009;94(8):1135-1150. doi:10.3324/haematol.2008.004267

22. Scrideli CA, Assumpção JG, Ganazza MA, Araújo M, Toledo SR, Lee MLM, Delbuono E, Petrilli AS, Queiróz RP, Biondi A, Viana MB, Yunes JA, Brandalise SR, Tone LG. A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Haematologica 2009;94(6):781-789. doi:10.3324/haematol.2008.003137

23. van der Velden VHJ, Corral L, Valsecchi MG, Jansen MWJC, De Lorenzo P, Cazzaniga G, Panzer-Grümayer R, Schrappe M, Schrauder A, Meyer C, Marschalek R, Nigro LL, Metzler M, Basso G, Mann G, Den Boer ML, Biondi A, Pieters R, van Dongen JJM, Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23:1073-1079. doi:10.1038/leu.2009.17

24. Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D, Benetello A, Buldini B, Maglia O, Masera G, Conter V, Arico M, Biondi A, Gaipa G. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27(31):5168-5174. DOI: 10.1200/JCO.2008.20.8934

25. Coustan-Smith E, Campana D. Immunologic minimal residual disease detection in acute lymphoblastic leukemia: a comparative approach to molecular testing. Best Pract Res Clin Haematol 2010;23:347-358. doi:10.1016/j.beha.2010.07.007

26. Gaipa G, Cazzaniga G, Valsecchi MG, Panzer-Grümayer R, Buldini B, Silvestri D, Karawajew L, Maglia O, Ratei R, Benetello A, Sala S, Schumich A, Schrauder A, Villa T, Veltroni M, Ludwig W-D, Conter V, Schrappe M, Biondi A, Dworzak MN, Basso G. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica 2012;97(10):1586-1593. doi:10.3324/haematol.2011.060426

27. Elorza I, Palacio C, Dapena JL, Gallur L, Toledo JS, Heredia CD. Relationship between minimal residual disease measured by multiparametric flow cytometry prior to allogeneic hematopoietic stem cell transplantation and outcome in children with acute lymphoblastic leukemia. Haematologica 2010; 95(6):936-941. doi:10.3324/haematol.2009.010843

28. Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica 2005;90(3):382-390.

29. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, Stow P, Su X, Shurtleff S, Pui C-H, Downing JR, Campana D. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011;117(23):6267-6276. doi:10.1182/blood-2010-12-324004

30. Malec M, van der Velden VHJ, Björklund E, Wijkhuijs JM, Söderhäll S, Mazur J, Björkholm M, Porwit-MacDonald. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TCR gene rearrangements and multicolor flow cytometric immunophenotyping. Leukemia 2004;18:1630-1636. doi:10.1038/sj.leu.2403444

31. Brüggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, Asnafi V, Baruchel A, Bassan R, Benoit Y, Biondi A, Cavé H, Dombret H, Fielding AK, Foà R, Gökbuget N, Goldstone AH, Goulden N, Henze G, Hoelzer D, Janka-Schaub GE, Macintyre EA, Pieters R, Rambaldi A, Ribera J-M, Schmiegelow K, Spinelli O, Stary J, von Stackelberg A, Kneba M, Schrappe M, van Dongen JJM. Standardized MRD quantification in European ALL trials: Proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia 2010;24:521-535. doi:10.1038/leu.2009.268

32. Campana D. Progress of Minimal Residual Disease Studies in Childhood Acute Leukemia. Curr Hematol Malig Rep 2010;5:169-176. DOI 10.1007/s11899-010-0056-8

33. Schrappe M. Minimal residual disease: optimal methods, timing, and clinical relevance for an individual patient. Hematology, Am Soc Hematol Educ Program 2012; 1:137-142.

34. Gaipa G, Basso G, Biondi A, Campana D. Detection of minimal residual disease in Pediatric Acute Lymphoblastic Leukemia. Cytometry Part B 2013;84B:359-369. DOI: 10.1002/cyto.b.21101

35. Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol 2012;19:313-318. DOI:10.1097/MOH.0b013e3283543d5c

36. Visser JWM, Martens ACM, Hagenbeek A. Detection of minimal residual disease in acute leukemia by flow cytometry. Ann NY Acad Sci 1986; 468:268-275.

37. Drach J, Drach D, Glassl H, Gattringer C, Huber H. Flow cytometric determination of atypical antigen expression in acute leukemia for the study of minimal residual disease. Cytometry 1992;13:893-901.

38. Griesinger F, Pirò-Noack M, Kaib N, Falk M, Renziehausen A, Troff C, Grove D, Schnittger S, Büchner T, Ritter J, Hiddemann W, Wörmann B. Leukemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukaemia: detection in remission marrow predicts outcome. British Journal of Haematology 1999;105:241-255.

39. Mejstriková E, Fronková E, Kalina T, Omelka M, Batinic D, Dubravcic K, Pospísilová K, Vásková M, Luria D, Cheng SH, Ng M, Leung Y, Kappelmayer J, Kiss F, Izraeli S, Stark B, Schrappe M, Trka J, Starý J, Hrusák O. Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr Blood Cancer 2010;54:62-70. DOI 10.1002/pbc.22261

40. Irving J, Jesson J, Virgo P, Case M, Minto L, Eyre L, Noel N, Johansson U, Macey M, Knotts L, Helliwell M, Davies P, Whitby L, Barnett D, Hancock J, Goulden N, Lawson S. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica 2009;94(6):870-874. doi:10.3324/haematol.2008.000414

41. Spinelli O, Tosi M, Peruta B, Montalvo MLG, Maino E, Scattolin AM, Parolini M, Viero P, Rambaldi A, Bassan R. Prognostic significance and treatment implications of minimal residual disease studies in Philadelphia-negative adult acute lymphoblastic leukemia. Meditterr J Hematol Infect Dis 2014, 6(1): e2014062, DOI 10.4084/MJHID.2014.062

42. Dworzak MN, Gaipa G, Schumich A, Maglia O, Ratei R, Veltroni M, Husak Z, Basso G, Karawajew L, Gadner H, Biondi A. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW MRD Study Group. Cytometry Part B 2010;78B:147-153. DOI: 10.1002/cyto.b.20516

43. Delbuono E, Maekawa YH, Latorre MRDO, Seber A, Petrilli AS, Braga JAP, Lee MLM. Simplified flow cytometric assay to detect minimal residual disease in childhood with acute lymphoblastic leukemia. Rev Bras Hematol Hemoter 2008;30(4):281-286.

44. Patkar N, Alex AA, Bargavi B, Ahmed R, Abraham A, George B, Vishwabandya A, Srivastava A, Mathews V. Standardizing minimal residual disease by flow cytometry for precursor B lineage acute lymphoblastic leukemia in a developing country. Cytometry Part B 2012;82B:252-258.
DOI: 10.1002/cyto.b.21017

45. Luria D, Rosenthal E, Steinberg D, Kodman Y, Safanaiev M, Amariglio N, Avigad S, Stark B, Izraeli S. Prospective comparison of two flow cytometry methodologies for monitoring minimal residual disease in a multicenter treatment protocol of childhood acute lymphoblastic leukemia. Cytometry Part B 2010;78B:365-371. DOI: 10.1002/cyto.b.20532

46. Lúcio P, Parreira A, van den Beemd MWM, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, Orfao A, Janossy G, van Dongen JJM, San Miguel JF. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999;13:419-427.

47. Mckenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001;98(8):2498-2506. doi:10.1182/blood.V98.8.2498

48. Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, Rubnitz JE, Sandlund JT, Pui C-H, Campana D. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100(1):52-58. doi:10.1182/blood-2002-01-0006

49. Dworzak MN, Fröschl G, Printz D, De Zen L, Gaipa G, Ratei R, Basso G, Biondi A, Ludwig W-D, Gadner H. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004;18:703-708. doi:10.1038/sj.leu.2403303

50. Dworzak MN, Gaipa G, Ratei R, Veltroni M, Schumich A, Maglia O, Karawajew L, Benetello A, Pötschger U, Husak Z, Gadner H, Biondi A, Ludwig W-D, Basso G. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry Part B 2008;74B:331-340. DOI: 10.1002/cyto.b.20430

51. Ratei R, Basso G, Dworzak M, Gaipa G, Veltroni M, Rhein P, Biondi A, Schrappe M, Ludwig W-D, Karawajew L. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia 2009;23:528-534. doi:10.1038/leu.2008.324

52. Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009;94(7):1016-1019. doi: 10.3324/haematol.2008.000299

53. Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui C-H, Campana D. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001;97(7):2115-2120. doi:10.1182/blood.V97.7.2115

54. Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R, Biondi A, Basso G, Gaipa G. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003;88(11):1245-1252.

55. Lee RV, Braylan RC, Rimsza LM. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia. Am J Clin Pathol 2005;123:119-124. DOI: 10.1309/X5VV6FKJQ6MUBLPX

56. Wilson K, Case M, Minto L, Bailey S, Bown N, Jesson J, Lawson S, Vormoor J, Irving J. Flow minimal residual disease monitoring of candidate leukemic stem cells defined by the immunophenotype, CD34+ CD38lowCD19+ in B-lineage childhood acute lymphoblastic leukemia. Haematologica 2010;95(4):679-683. doi: 10.3324/haematol.2009.011726

57. Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E, Campana D, Koscielniak E, Niemeyer C, Schlegel PG, Müller I, Niethammer D, Bader P. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukemia by flow cytometry and real-time PCR. British Journal of Haematology 2005;128:774-782. doi:10.1111/j.1365-2141.2005.05401.x

58. Guillaume N, Penther D, Vaida I, Gruson B, Harrivel V, Claisse JF, Capiod JC, Lefrere JJ, Damaj G. CD66c expression in B-cell acute lymphoblastic leukemia: strength and weakness. Int Jnl Lab Hem 2011;33:92-96. doi:10.1111/j.1751-553X.2010.01254.x

59. Solly F, Angelot F, Garand R, Ferrand C, Seillès E, Schillinger F, Decobecq A, Billot M, Larosa F, Plouvier E, Deconinck E, Legrand F, Saas P, Rohrlich P-S, Garnache-Ottou F. CD 304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry Part A 2012;81A:17-24. DOI: 10.1002/cyto.a.21162

60. DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry Part B 2009;76B:150-155. DOI: 10.1002/cyto.b.20440

61. Muzzafar T, Medeiros LJ, Wang AS, Brahmandam A, Thomas DA, Jorgensen JL. Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia. Utility in detection of minimal residual disease by flow cytometry. Am J Clin Pathol 2009;132:692-698. DOI: 10.1309/AJCP02RPVOKTNWEC

62. Rhein P, Mitlohner R, Basso G, Gaipa G, Dworzak MN, Kirschner-Schwabe R, Hagemeier C, Stanulla M, Schrappe M, Ludwig W-D, Karawajew L, Ratei R. CD11b is a therapy resistance - and minimal residual disease - specific marker in precursor B-cell acute lymphoblastic leukemia. Blood 2010;115(18):3763-3771. doi:10.1182/blood-2009-10-247585

63. Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, Bugarin C, Veltroni M, Michelotto B, Ratei R, Coliva T, Valsecchi MG, Biondi A, Dworzak MN. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005;19:49-56. doi:10.1038/sj.leu.2403559

64. Dworzak MN, Fritsch G, Fleischer C, Printz D, Fröschl G, Buchinger P, Mann G, Gadner H. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia 1997;11:1266-1273.

65. Porwit-MacDonald A, Björklund E, Lucio P, van Lochem EG, Mazur J, Parreira A, van den Beemd MWM, van Wering ER, Baars E, Gaipa G, Biondi A, Ciudad J, van Dongen JJM, San Miguel JF, Orfao A. BIOMED-1 Concerted Action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000;14:816-825.

66. Volejnikova J, Mejstrikova E, Valova T, Reznickova L, Hodonska L, Mihal V, Sterba J, Jabali Y, Prochazkova D, Blazek B, Hak J, Cerna Z, Hrusak O, Stary J, Trka J, Fronkova E. Minimal residual disease in peripheral blood at day 15 identifies a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with superior prognosis. Haematologica 2011;96(12):1815-1821. doi:10.3324/haematol.2011.042937

67. van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJM. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003;17:1013-1034. doi:10.1038/sj.fleu.2402922

68. van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JHJM, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003;17:2257–2317. doi:10.1038/sj.leu.2403202

69. Kraszewska MD, Dawidowska M, Szczepánski T, Witt M. T-cell acute lymphoblastic leukaemia: recent molecular biology findings. British Journal of Haematology 2011;156:303-315. doi:10.1111/j.1365-2141.2011.08957.x

70. Brüggemann M, van der Velden VHJ, Raff T, Droese J, Ritgen M, Pott C, Wijkhuijs AJ, Gökbuget N, Hoelzer D, van Wering ER, van Dongen JJM, Kneba M. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 2004(18):709-719. doi:10.1038/sj.leu.2403263

71. van der Velden VHJ, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, Basso G, Schrappe M, Wijkhuijs JM, Konrad M, Bartram CR, Masera G, Biondi A, van Dongen JJM. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007;21:706-713. doi:10.1038/sj.leu.2404535

72. Dawidowska M, Jólkowska J, Szczepanski T, Derwich K, Wachowiak J, Witt M. Implementation of the standard strategy for identification of Ig/TCR targets for minimal residual disease diagnostics in B-cell precursor ALL pediatric patients: Polish experience. Arch Immunol Ther Exp 2008;56:409-418. DOI 10.1007/s00005-008-0045-y

73. Assumpção JG, Paula FDF, Xavier SG, Murao M, Neto JCA, Dutra AP, Lima ER, Oliveira BM, Viana MB. Gene rearrangement study for minimal residual disease monitoring in children with acute lymphocytic leukemia. Rev Bras Hematol Hemoter 2013;35(5):337-342. DOI: 10.5581/1516-8484.20130115

74. Paula FDF, Santos SME, Xavier SG, Ganazza MA, Jotta PY, Yunes JA, Viana MB, Assumpção JG. Comparison between qualitative and real-time polymerase chain reaction to evaluate minimal residual disease in children with acute lymphoblastic leukemia. Rev Bras Hematol Hemoter 2015; 37(6): 373-380. doi:10.1016/j.bjhh.2015.08.003

75. van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, Trka J, Eckert C, Foroni L, zur Stadt U, Beldjord K, Raff T, van der Schoot CE, van Dongen JJM. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21:604-611. doi:10.1038/sj.leu.2404586

76. Scrideli CA, Tone LG. Qualitative polymerase chain reaction versus quantitative polymerase chain reaction for the detection of minimal residual disease in children with acute lymphoblastic leukemia. Rev Bras Hematol Hemoter 2015. doi:10.1016/j.bjhh.2015.08.010

77. van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, Comans-Bitter WM, Willemse MJ, Hählen K, Kamps WA, van Wering ER, van Dongen JJM. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002;16:1432-1436. doi:10.1038/sj.leu.2402636

78. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero ILM, van Dongen JJM. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997;11:2192-2199
.
79. Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E, Pui C-H, Campana D. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2012;120(26):5173-5180. DOI:10.1182/blood-2012-07-444042

80. Thörn I, Forestier E, Botling J, Thuresson B, Wasslavik C, Björklund E, Li A, Lindström-Eriksson E, Malec M, Grönlund E, Torikka K, Heldrup J, Abrahamsson J, Behrendtz M, Söderhäll S, Jacobsson S, Olofsson T, Porwit A, Lönnerholm G, Rosenquist R, Sundström C. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolor flow cytometry. British Journal of Haematology 2011;152:743-753. doi:10.1111/j.1365-2141.2010.08456.x

81. Ryan J, Quinn F, Meunier A, Boublikova L, Crampe M, Tewari P, O´Marcaigh A, Stallings R, Neat M, O´Meara A, Breatnach F, McCann S, Browne P, Smith O, Lawler M. Minimal residual disease detection in childhood acute lymphoblastic leukemia patients at multiple time-points reveals high levels of concordance between molecular an immunophenotypic approaches. British Journal of Haematology 2008;144:107-115. doi:10.1111/j.1365-2141.2008.07429.x

82. Campana D. Should minimal residual disease monitoring in acute lymphoblastic leukemia be standard of care? Curr Hematol Malig Rep 2012;7:170-177. DOI:10.1007/s11899-012-0115-4