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Abstract. Toll-like receptors belong to the pattern recognition receptors family present on a variety
of immune cells including normal and malignant B-cells. They act as immediate molecular sentinels
of innate immunity but also act as a molecular bridge between the innate and the adaptive immune
response; distinct Toll-like receptors are able to bind specific pattern molecules of bacteria, viruses
and autoantigens. In this review we will briefly introduce the Toll-like receptor family and their
expression pattern, signaling and function in the B cell context; following we will summarize the
published data on TLR in chronic lymphocytic leukemia, and we will discuss their emerging role in
the modulation of leukemia pathobiology.

Introduction. Inflammation primarily defends the host
organism against infections and is a self limiting
process; however, its deregulation leads to chronic
inflammatory processes that may favor the
development of cancer.1 Toll-like receptors (TLR) are
well known for their key role regulating innate
immunity; emerging evidence support their key
regulatory role also in tumor biology. Among other
microenvironmental elements, TLR may also play a
role in hematologic malignancies, especially in chronic
lymphoid malignancies.2,3 First, we will briefly
introduce the role of TLR in normal immune cells.
Next we will describe available data on the expression
and function of TLR in malignant B lymphocytes. On
these bases we will discuss the pathobiology of TLR in
Chronic Lymphocytic Leukemia (CLL).

Toll-like Receptors (TLR). Innate immune cells
express various pattern-recognition receptors (PRR)
which recognize common signatures of molecules that
are important components of bacteria and viruses and
are called pathogen-associated molecular patterns
(PAMP).4 The response of the innate immune system
plays a central role not only in eliminating infectious
agents but also in developing pathogen-specific
adaptive immunity mediated by B and T cells. Toll-like
receptors (TLR) are PRR expressed by a variety of
leukocytes as well as by non-immune cells present in
particular sites of barrier function such as intestinal or
airway epithelia. However, it has been demonstrated
that they are activated not only by exogenous PAMP
but also by endogenous ligands, so called “danger
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signals”. These danger-associated molecular patterns
(DAMPs) are host-derived TLR ligands5,6 (see Figure
1 for a schematic representation of TLR and ligands).

TLR are grouped into the same family based on
their sequence similarity and structural features; there
are ten TLR in humans and twelve in mice where
TLR10 pseudogene does not translate into a functional
protein.4 They are expressed within distinct cellular
compartments: TLR1, TLR2, TLR4, TLR5, TLR6, and
TLR10 are present on the cell surface whereas TLR3,
TLR7, TLR8 and TLR9 are localized into intracellular
vesicles such as endosomes, lysosomes and ER.
Intracellular TLR are transported into the vesicles via
the transmembrane protein UNC93B1 which is
localized in the ER of the cells.7 Each TLR can sense
specific PAMPs; in details, TLR1 can form
heterodimers with TLR2 and bind tri-acetylated
lipopeptides, which are coupled with peptidoglycan
layer of bacteria. Another well characterized
heterodimer is TLR2/TLR6 which recognizes di-

acetylated lipopeptides and bacterial cell wall
components such as lipoteichoic acid or
peptidoglycans, mycobacterial cell wall components
like lipomannans and the yeast cell wall zymosan.
TLR3 binds to double stranded RNA from viral
sources while TLR4 responds to lipopolysaccharide
(LPS) mostly from Gram-negative bacteria; the only
known ligand for TLR5 is flagellin. The intracellular
TLR7 and TLR8 share the same ligand, the single
stranded RNA from viruses, while TLR9 binds to
DNA-containing unmethylated CpG motifs which are
commonly found in bacterial DNA.4,8

Distinct TLR can also sense different DAMPs.5

TLR2 and TLR4 are the best characterized in this
respect; they have several endogenous ligands such as
heat shock proteins including HSP70 and Gp96),9,10

HMGB1,11 extracellular matrix (ECM) molecules12 and
their fragments.13 TLR1/TLR2 were shown to be
activated by β-defensin-3;14 TLR3 by self-nucleic
acids.15 TLR7 and TLR9 can also participate to
autoantigen response together with the B cell receptor

Figure 1. Schematic representation of the TLR expression pattern in CLL cells. MDP: muarmyldipeptide; DAP: D-glutamyl-diaminopimelic
acid; ssRNA: single strand RNA.



Mediterr J Hematol Infect Dis 2012; 4: Open Journal System

by recognizing RNA-associated autoantigens16 and
chromatin-IgG complexes17 respectively.

The last discovered TLR10 is an orphan receptors;
however, sequence analysis as well as chimeric
receptors experiments suggested that human TLR10
and TLR1 share common mechanisms of innate
immune sensing but not signaling.18,19

CD180 (also named RP105 or Ly64) is homologous
to TLR4 but lacks the intracellular TLR-like domain.20

RP105 is associated with MD-1 which is indispensable
for its cell-surface expression.20 RP105-deficient B
cells are defective in response to TLR2 and TLR4
ligands.21 However, it was also demonstrated that
RP105 may prevent the interaction of LPS with TLR4
in macrophages and dendritic cells22 suggesting
different roles of RP105 within differet cell types.
Other studies demonstrated that CD180 has a role in B-
cell activation (by up-regulating CD86) and
proliferation.23 Furthermore CD180 stimulation
induces B cell proliferation and differentiation, causing
increases in IgG, and integrates MyD88-dependent
TLR signals to modulate proliferation, production of
cytokines, and differentiation.24

NOD-like Receptors. Another family of PRRs, the
NOD-like receptors family (NLRs), is composed of
several cytosolic molecules including the first
discovered NOD1 and NOD2 (also known as CARD4
and CARD15). NLRs show a variable modular
structure and contain different domains: a CARD or
pyrin domain at the N-terminal portion; a central
nucleotide binding and oligomerization domain;
Leucine Rich Repeats (LRR) at the C-terminal domain.
While NODs contain a CARD domain, NALPs contain
a pyrin domain NAIP being an exception as it contains
different BIR domains.25 NOD1 and NOD2 are well
characterized intracellular molecules that recognize
bacterial peptidoglycans. Their expression is wide and
includes B-cells where a synergism between NOD-like
receptors and Toll-like receptors was observed.26

NOD1 binds iE-DAP dipeptide which is found in
peptidoglycan of most Gram-negative bacteria while
NOD2 responds to MDP (muarmyldipeptide) which is
the minimal bioactive peptidoglycan motif common to
all bacteria. NOD stimulation leads to inflammatory
genes transcription through NF-kB and MAPK
activation.27,28

TLR Signaling. TLR are type I integral membrane
glycoproteins and have a modular structure. The
extracellular N-Terminal domain consists of
approximately 16-28 Leucin-Rich Repeats (LRRs)
which mediate ligand binding specificity. The
cytoplasmic domain is highly conserved and termed

Toll-IL-1R (TIR) domain according to the high
similarity shared with the Drosophila Toll and the
mammalian IL-1R protein.29 This domain acts as
binding site for downstream adaptor molecules that
mediate the signal to others proteins (see Figure 2 for a
schematic representation of TLR signaling pathways).
Two main adaptors are recruited to the TIR domain;
MyD88, which is recruited to the TLR-TIR domain
together with Mal (MyD88 adaptor-like) also called
TIRAP (TIR-domain-containing adaptor protein), and
TRIF (Toll-receptor-associated activator of
interferon).30 Throughout the first pathway, the
induction of specific gene expression is mediated by
the NF-κB (nuclear factor k B) transcription factor, 
AP-1 (activating protein 1) or IRF1, 5 and 7
(interferon-response factor); on the other hand, the
second pathway is regulated by IRF3 and NF-κB.31

Only TLR4 can trigger downstream signals through
both pathways; all the others, except for TLR3, act via
MyD88. The death domain of MyD88 recruits IRAK
family members to the TLR signaling complex,
activate them and transmit the signal to TRAF6 which
allows the phosphorylation of IKK. The pathway flows
with the activation of NF-κB and the recruitment of 
TAK1 that induces the MAPK pathways. These
signaling cascades eventually induce the transcription
of inflammatory cytokines, type I or II interferons and
chemokines.30

Fine tuning of TLR and IL-1R family (ILR) is
regulated by the inhibitory receptor TIR8 (Toll IL-1R
8), also known as Single Ig IL-1 related receptor
(SIGIRR); TIR8 acts as a decoy target for TLR and
ILR (IL-1R, IL-18R, IL-33R/ST2) signaling
molecules.32,33 SIGIRR inhibits interleukin-1 receptor-
and TLR-mediated signaling through different
mechanisms. Both extracellular domain and the
intracellular portion of TIR8 are involved; the
intracellular TIR domain of TIR8 sequesters MyD88
and IRAK-1, while the extracellular domain interferes
with heterodimerization of IL-1R1 and IL-1AcP.34,35

Other signaling molecules such as IRAK-M and
SOCS-1 negatively regulate IRAK. IRAK-M
expression has been shown to be restricted to
monocytes and macrophages; it blocks the dissociation
of IRAK1/4 and the following activation of TRAF6.36

SOCS-1 knock-out mice show over-expression of
different cytokines specifically after treatment with
LPS.37

TLR in Normal B Lymphocytes. The TLR
expression pattern is quite specific and unique for each
cell type;38 in normal human B-cells TLR1, TLR2,
TLR6, TLR7, TLR8, TLR9 and TLR10 are prevalently
expressed; in contrast TLR repertoire in mouse B cells
includes high levels of TLR4 and no TLR10
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Figure 1. Schematic representation of TLR signialing pathway.

protein.39-41 In human cells, TLR expression is rapidly
up-regulated by BCR triggering of naïve B cells
suggesting a synergism between BCR and TLR leading
to B-cell proliferation and differentiation.39,40 TLR
expression is also specific for each B-cell subset.42 B
cells of the inflamed tonsils show abundant TLR
expression.43

In general terms TLR stimulation can trigger
activation, proliferation and differentiation of B cells;
nevertheless, TLR ligation with specific ligands can
induce specific responses in the B cell subsets analyzed
either in mouse models or human system (see specific
reviews on this topic).44-46 In human cells It was shown
that maintenance of serological memory can be
achieved by polyclonal activation, and memory B cells
can be activated by CpG and cytokines without need
for BCR triggering.47 However, it has been proposed a
model in which the costimulation of three different
signals derived from BCR, CD40 and TLR is required
to induce full activation, proliferation and
differentiation of naive B-cells.48 Recent studies also
showed that a specific culture system using CpG

together with sequential steps for T-cell-independent
activation of naive human B cells can also induce
plasma-cell differentiation.49

Expression Pattern of TLR in CLL Cells. Already
before the discovery of TLR9 as the cognate receptor
for unmethylated-CpG-oligonucleotides,50 these
immunostimulatory agents have been used to stimulate
leukemic CLL cells for immunotherapeutic strategies.51

Therefore, it was assumed, and soon confirmed, that
CLL cells express functional TLR9, similar to normal
B lymphocytes.52,53 However, only recently the full
expression pattern of TLR was assessed in CLL
samples by different groups.54-56

The expression of TLR in CLL is quite
heterogeneous between patients but most cases express
TLR1, TLR2, TLR6, TLR10 on the cell surface, and
TLR7, TLR8, TLR9 within endosomes55 thus
resembling normal mature B lymphocytes.39,40,43

Recently, we have studied the full expression profile of
mRNA for TLR and signaling molecules in a large
group of chronic lymphocytic leukemia (CLL) patients
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to search for potential differences in specific subsets of
patients. At cohort levels, CLL cells show high
expression of TLR7, intermediate expression of TLR1,
TLR6, TLR10 and low expression of TLR2, TLR4,
TLR8 and TLR9. As for TLR4 and TLR8 a significant
variation was observed among different samples.57

Comparison in subgroups of cases carrying mutated or
unmutated IGHV genes revealed few significant
differences in TLR signaling molecules; up-regulation
of TLR8 mRNA and down-regulation of TLR4 were
observed in the unmutated subgroup.57

The TLR related molecule RP105, also called
CD180 or Ly64 was shown to be variably expressed by
leukemic cells.58,59 Significantly higher levels of
CD180 were expressed by CLL cells with mutated
IGVH genes as compared to unmutated CLL.58

Further, expression of NOD1 (CARD4) and NOD2
(CARD15) mRNA was studied in a group of CLL
patients in comparison with MEC1 cell line and normal
B-lymphocytes. Both NOD molecules, including two
different isoforms of NOD1, were expressed in all B-
cell types analyzed.55

We have previously shown that both normal and
leukemic B cells express detectable levels of TIR8
mRNA;55 however, by PCR array analysis, malignant
B cells appear to have very low levels of mRNA.60

Since mRNA and protein levels of TIR8 have been
shown to be differentially regulated,61 it will be
important to analyze TIR8 protein expression on the
cell surface of normal and leukemic B lymphocytes.

Finally, our group recently analyzed the mRNA
expression pattern of the molecules regulating Toll-like
receptor signaling pathway in a large cohort of CLL
patients; different members of the NFKB, JNK/p38,
NF/IL6 and IRF pathways are intermediately-to-highly
expressed, while inhibitors of TLR activity are
generally low-to-undetectable, indicating that the TLR
signaling framework is competent in CLL cells.57

To note, all these studies analyzed leukemic cells
isolated from the peripheral blood of patients; it will be
of interest to compare TLR expression pattern within
lymphoid tissues where one would expect TLR ligation
to occur. In fact, it was reported that, in addition to
BCR, TLR signaling pathways could contribute to NF-
kB activation specifically in the lymph node
microenvironment.62

Gene Polymorphisms and Mutations of the TLR
Pathway in CLL. Functional polymorphisms in TLR
genes were analyzed by different groups to determine
if they influenced lymphoma susceptibility. TLR6
variants were found to be important in different B cell
lymphomas including CLL;63 the TLR2-16933T>A
variant was associated with a decreased risk of CLL;64

two TLR10-TLR1-TLR6 variants in moderate linkage

disequilibrium were significantly associated with Non
Hodgkin Lymphoma including CLL cases.65

More recently, MyD88 oncogenic mutations were
described in different B cell malignancies; in details,
recurrent single point mutations were found in 29% of
ABC type Diffuse Large B Cell Lymphoma cases,66

13% of Splenic Marginal Zone Lymphoma cases,67

36% of Primary Central Nervous System Lymphoma
cases,68 and 3-10% of CLL cases.69-71 Since MyD88 is
a signaling molecule specific for TLR and IL-1R
family, this mutation may affect specific signaling
pathways in leukemic cells which may be considered
as novel therapeutic targets. Indeed, inhibition of the
MyD88 downstream kinases IRAK1/4 with small
molecule inhibitors was shown to effectively block
TLR signaling cascade in vitro and to induce cell death
of lymphoma cells bearing specific MyD88
mutations.66

TLR and Activation of Leukemic Cells. Several
reports (mainly focused onto TLR9) showed that CpG
immunostimulatory oligonucleotides shape an
immunogenic phenotype in CLL cells.51,72 Several
surface antigens have been investigated in CLL cells
before and after CpG addition to the cell culture;
among these CD25, CD40, CD54, CD80, CD86 CD95,
MHCI, MHCII;51,73 the expression of these molecules
contribute to increase of the immunogenicity of the
leukemic cells that are per se weakly immunogenic and
may escape the control exerted by tumor-reactive T
cells.74-76 Stimulation of CLL cells with different
agonists of TLR also increases the number of CD25,
CD80 and CD86 positive cells, and this was
demonstrated for PAM3CSK4 (palmitoyl-3-cysteine-
serine-lysine-4 binding to TLR1/2 heterodimer),
MALP-2 (Mycoplasmal Macrophage-activating
Lipopeptide-2 binding to TLR2/6 heterodimer) and
MDP (Muramildipeptide binding to NOD2).56,77 TLR7
stimulation is also able to increase the expression of
costimulatory molecules on leukemic cells (CD25,
CD80, CD86) and the production of inflammatory
cytokines including TNF and IL-6.78,79 Moreover, the
TLR9 ligand CpG induces the production of TNFα, IL-
10 and to a lesser extent of IL6.51,56,73,80 Given the
ability of CpG to induce CD25 expression, TLR9
ligands were also tested in vitro in combination with a
specific anti-CD25 immunotoxin to treat CLL cells.81

Both TLR7 and TLR9 agonists have been studied for
immunotherapy approaches in preclinical models of
CLL in vitro,73,82,83 and are currently under clinical
investigation84-86 (see reference87 for a recent review on
this topic).

More recently, our group showed differences in the
induction of co-stimulatory molecules and/or apoptosis
in mutated vs. unmutated CLL. Different responses
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were also identified in subsets with stereotyped BCR.79

The distinct patterns of TLR/NOD2 functional activity
in cells from CLL subgroups defined by the molecular
features of the BCR might prove relevant for
elucidating the immune mechanisms underlying the
natural history of CLL and for defining subgroups of
patients who might benefit from treatment with
specific TLR ligands.

TLR, Proliferation and Apoptosis of Leukemic
Cells. Previous reports showed that CpG
immunostimulatory oligonucleotides induce
proliferation of CLL cells, either alone or in
combination with IL-2.51,72 However, it was also
reported that TLR9 signaling by CpG-B
oligonucleotides may induce an apoptotic pathway in
CLL.56,73 Further, several groups described a
heterogeneous response to TLR9 stimulation in terms
of proliferation and apoptosis within different groups
of patients;56,88 in details, it was reported that CpG
induced apoptosis in mutated, and proliferation in
unmutated patient samples.53,89 It is relevant to note in
this context that phosphorothioate oligonucleotides
may induce apoptosis of CLL cells independently of
their CpG motifs, indicating that the presence of a
chemical backbone and nucleotide composition may
contribute to the observed cell death.90

As for additional TLR, we previously showed that
TLR1/2 and TLR2/6 heterodimers can activate and
protect leukemic cells from spontaneous apoptosis in
vitro.55,79 Again, different groups showed heterogeneity
among patients samples and apoptosis induction was
reported in a proportion of cases;56 nevertheless, it was
recently shown that distinct innate immunity pathways

can be activated in subgroups of CLL with distinct
immunoglobulin receptors.79

Dissecting the Role of TLR in CLL Pathobiology.
CLL patients are often associated with an increased
frequency and severity of infections which is a
characteristic feature of the disease.91 In addition,
autoimmune complications can occur in up to a quarter
of CLL patients.92 It was also suggested that common
infections may play a role in CLL etiology;93-95 this
may be due to underlying immune disturbance in CLL
patients, and/or to a direct effect of microbial antigens
on the leukemic clone. Given all this, one could
hypothesize that inflammation or autoimmunity
mediated by distinct TLR may also play a role in
regulating the development, progression and/or
accumulation of CLL. Indeed, in mouse models of
CLL the lack of the inhibitory receptor TIR8, which
allows an unabated TLR-mediated stimulation, triggers
leukemia progression in vivo.96 However, these
findings do not allow to understand whether TLR
contribute (and to what extent) to early or late or
both/any phase of disease progression.

Since TLR can improve immune response but may
also be involved in modulating tumor cell proliferation
and apoptosis, the possibility that TLR activity may
shuttle between defense from and promotion of
leukemic growth has to be taken into account. Future
studies combining in vitro and in vivo approaches will
help to identify the specific role of TLR within specific
subsets of patients. Finally, kinetic studies will help
elucidating the distinct role of distinct TLR in different
phases of disease initiation, accumulation and/or
progression.
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