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Abstract. Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world 

and shows a remarkable heterogeneity in the clinical course. Understand the genetic basis of CLL 

may help in clarifying the molecular bases of this clinical heterogeneity. 

aberrations at 13q14, 12q, 11q22-q23 and 17p13, and 

identified as drivers of the disease. While some of these lesions are associated with poor outcome 

(17p13 deletion, TP53 mutations and, t

favorable course (13q14 deletion as sole aberration). Recently, next generation sequencing has 

revealed additional recurrent alterations in CLL targeting the 

NOTCH1, SF3B1, and BIRC3 lesions provide: 

tumor progression and chemoresistance in this leukemia; 

of poor risk patients, having individually shown correlations with 

therapeutic targets, especially in the setting of high risk disease. This review will summarize the 

most important genetic aberrations in CLL and how our improved knowledge of the genome of 

leukemic cells may translate into improved patients' management.

 
Introduction. In Western countries, chronic 

lymphocytic leukemia (CLL) is the most frequent 

mature B-cell malignancy.
1,2

 The course CLL ranges 

from very indolent, with a nearly normal life 

expectancy, to rapidly progressive leading to early 

death.
3-8

 Understand the genetic basis of CLL may help 

in clarifying the molecular determinants of this clinical 

heterogeneity and improve patients' prognostication.

Recurrent chromosomal aberrations at 13q14, 12q, 

11q22-q23 and 17p13 are the first genetic lesions 
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Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world 

and shows a remarkable heterogeneity in the clinical course. Understand the genetic basis of CLL 

may help in clarifying the molecular bases of this clinical heterogeneity. Recurrent chromosomal 

q23 and 17p13, and TP53 mutations are the first genetic lesions 

identified as drivers of the disease. While some of these lesions are associated with poor outcome 

mutations and, to a lesser extent, 11q22-q23 deletion) others are linked to a 

favorable course (13q14 deletion as sole aberration). Recently, next generation sequencing has 

revealed additional recurrent alterations in CLL targeting the NOTCH1, SF3B1, and 

lesions provide: i) new insights on the mechanisms of leukemogenesis, 

tumor progression and chemoresistance in this leukemia; ii) new biomarkers for the identification 

of poor risk patients, having individually shown correlations with survival in CLL; and 

therapeutic targets, especially in the setting of high risk disease. This review will summarize the 

most important genetic aberrations in CLL and how our improved knowledge of the genome of 

proved patients' management. 

In Western countries, chronic 

lymphocytic leukemia (CLL) is the most frequent 

The course CLL ranges 

from very indolent, with a nearly normal life 

expectancy, to rapidly progressive leading to early 

Understand the genetic basis of CLL may help 

in clarifying the molecular determinants of this clinical 

heterogeneity and improve patients' prognostication. 

Recurrent chromosomal aberrations at 13q14, 12q, 

q23 and 17p13 are the first genetic lesions 

identified as drivers of the disease, and has enabled the 

construction of a hierarchical model of cytogenetic 

abnormalities that correlates with outcome.

Cytogenetic lesions, however, may not entirely explain 

the genetic basis of CLL clinical heterogeneity, as 

documented by the contribution of 

assessment in identifying high risk patients.

major improvements in massive parallel sequencing 

technologies have provided an opportunity to examine 

the CLL genome, allowing for the iden
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Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world 

and shows a remarkable heterogeneity in the clinical course. Understand the genetic basis of CLL 

Recurrent chromosomal 

mutations are the first genetic lesions 

identified as drivers of the disease. While some of these lesions are associated with poor outcome 

q23 deletion) others are linked to a 

favorable course (13q14 deletion as sole aberration). Recently, next generation sequencing has 

, and BIRC3 genes. 

new insights on the mechanisms of leukemogenesis, 

new biomarkers for the identification 

survival in CLL; and iii) new 

therapeutic targets, especially in the setting of high risk disease. This review will summarize the 

most important genetic aberrations in CLL and how our improved knowledge of the genome of 

identified as drivers of the disease, and has enabled the 

construction of a hierarchical model of cytogenetic 

abnormalities that correlates with outcome.
9
 

Cytogenetic lesions, however, may not entirely explain 

the genetic basis of CLL clinical heterogeneity, as 

documented by the contribution of TP53 mutation 

ing high risk patients.9 The recent 

major improvements in massive parallel sequencing 

technologies have provided an opportunity to examine 

the CLL genome, allowing for the identification of 
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genomic alterations underlying the disease and for the 

discovery of new therapeutic targets and clinically 

predictive biomarkers such as NOTCH1, SF3B1 and 

BIRC3.
10-16

 

 

Prevalence of Genetic Lesions at Different CLL 

Clinical Phases. During its history, CLL may proceed 

through distinct clinical phases, ranging from a pre-

malignant condition known as monoclonal B-cell 

lymphocytosis (MBL), to overt CLL, and even 

transformation into an aggressive lymphoma (Richter 

syndrome).1,2  

Similarly to other pre-malignant conditions, also 

MBL frequently harbor genetic changes that can be 

found in the overt disease. In MBL, 13q14 deletion 

occurs at the same prevalence as in overt CLL (~40-

50% of cases), even when the number of circulating 

monoclonal CLL-like cells is extremely small, thus 

indicating that this lesion occurs early during the 

natural history of the disease.17-21 What distinguishes 

MBL from CLL is the rate of occurrence of genetic 

lesions that are considered secondary events and that 

associate with poor outcome in this leukemia.
19,21

 In 

clinical MBL, 11q22-q23 deletion, 17p13 deletion and 

mutations of BIRC3, TP53, NOTCH1 and SF3B1 may 

be observed in ~1-3% of cases, a prevalence that is 

significantly lower than that of CLL (Table I).17,19,21,22 

High risk cytogenetic abnormalities have been 

occasionally described also in low count MBL, but the 

biological implications of this observation are currently 

unknown.
18,20

 

When CLL is overt, three major clinical phases can 

be envisaged, including: i) newly diagnosed CLL; ii) 

progressive CLL; and iii) relapsed and fludarabine-

refractory CLL (Table I).
2
 TP53 abnormalities, 

including mutations and 17p13 deletions, are observed 

in ~5-10% newly diagnosed CLL, in ~10% progressive 

CLL requiring first treatment,
9,23-32

 and in ~40-50% 

relapsed and fludarabine-refractory CLL,33-35 thus 

representing the most frequent lesions in this high risk 

clinical condition. Deletion of 11q22-q23 occurs in 10-

15% in newly diagnosed CLL, 9,36 while its prevalence 

raises to 20-25% at the time of first treatment and 25-

30%% at fludarabine-refractoriness.
24,29,33,34

 Mutations 

of ATM, which is included in the minimal common 

region of deletion on 11q22-q23, have been shown to 

be present in 12% of newly diagnosed patients and in 

15% progressive CLL requiring first treatment.37-40 By 

combining mutations and deletions, genetic lesions of 

ATM occur in 25% of diagnostic samples of CLL and 

in 37% cases requiring first treatment.37-40 These 

frequencies make ATM alterations the most common 

genetic lesions predicting poor outcome at CLL 

presentation and treatment requirement.  

Among the novel genetic alterations disclosed by 

whole genome/exome sequencing, NOTCH1, SF3B1 

and BIRC3 lesions follows the same distribution across 

CLL clinical phases as TP53 and ATM abnormalities 

(Table 1). NOTCH1 mutations recur in ~10% 

unselected newly diagnosed CLL while their 

prevalence increases to 15-20% in progressive and 

relapsed cases.
10,11,14

 SF3B1 mutations have been 

identified in ~7% unselected newly diagnosed CLL, 

while their prevalence rises to 17% in relapsed and 

fludarabine-refractory patients.
12,13,16

 BIRC3 lesions 

occur at low rate (4% of cases) in unselected newly 

diagnosed CLL, while are enriched among relapsed 

and fludarabine-refractory CLL (24% of cases).
15

 

Because of their recent identification and the lack of 

information from large clinical trials, the precise rate of 

occurrence of NOTCH1, BIRC3, and SF3B1 lesions at 

the time of first treatment requirement still remains to 

be clarified.  

Within the spectrum of the various aspects of CLL, 

Richter syndrome (RS) is the most aggressive clinical 

phenotype because of the combined effect of 

chemoresistance and rapid disease kinetics. The 

clinical behavior of RS is strongly related to its genetic 

background (Table I). The high rate of TP53 

abnormalities, which occur in ~60% cases and 

represent the most frequent genetic lesion at the time of 

transformation, accounts for the chemoresistance that is 

very common in RS.
41

 NOTCH1 mutations are the 

second most frequent genetic lesion in RS, where they 

occur in ~30% of cases.10 Among the other high risk 

genetic lesions, ATM abnormalities, BIRC3 genetic 

lesions and SF3B1 mutations that are otherwise 

enriched at the time of chemorefractoriness are rare or 

absent in RS, thus strengthening the notion that RS is 

molecularly distinct from chemorefractory progression 

without transformation.13,14,41 

 
Table 1. Prevalence of CLL recurrent lesion stratified according the disease phase 

    
TP53 

disruption  
  del 11q22-q23   NOTCH1 mutations   SF3B1 mutations   BIRC3 disruption 

MBL   1-2%   0-3%   3%   1-2%   0 

Diagnosis   5-10%   10-15%   8-11%   4-7%   0.05 

First treatment   10-11%   20-25%   10-15%   17%   n.a. 

Chemorefractoriness   40-50%   25-30%   15-20%   17%   25% 

Richter Syndrome   50-60%   10%   30-40%   6%   0 

CLL, Chronic lymphocytic leukemia; MBL, Monoclonal B-cell lymphocytosis
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TP53 Abnormalities. The tumor suppressor gene 

TP53 codes for a central regulator of the DNA-

damage-response pathway, and its activation leads to 

cell-cycle arrest, DNA repair, apoptosis, or senescence 

through both transcription-dependent and 

transcriptional-independent activities.42  Among CLL 

harboring TP53 abnormalities, mutations of TP53 co-

occurred with deletion of the corresponding locus in 

~70% of cases, consistent with a dual hit mechanism of 

inactivation.
43

 The remaining ~30% of cases have 

17p13 deletion in the absence of TP53 mutations 

(~20%), or TP53 mutations in the absence of 17p13 

deletion (~10%). TP53 mutations are mainly 

represented by missense substitutions targeting the 

DNA-binding domain, while the remaining are 

truncating lesions. Mutations either directly disrupt the 

DNA binding domain of TP53 or cause conformational 

changes of the TP53 protein, thus leading to severely 

impaired TP53 function.
43,44

 

The clinical importance of TP53 abnormalities in 

CLL is tightly linked to their close association with 

poor outcome and refractoriness, as documented by a 

number of observational studies and prospective trials 

led in both the chemotherapy and immuno-

chemotherapy era.  Among unselected newly 

diagnosed CLL, patients harboring 17p13 deletion have 

an estimated median overall survival (OS) of only 3-5 

years.
9,45

 However, it is important to stress that there is 

a small subgroup of patients with 17p13 deletion (and 

mostly mutated immunoglobulin genes) who may 

exhibit stable disease for years without treatment 

indications.
45

 

 The outcome of patients with 17p13 deletion and 

need for treatment is very poor. With the most effective 

regimen available today for CLL, i.e. FCR 

(fludarabine-cyclophosphamide-rituximab), patients 

with 17p13 deletion have a poor response (5% of 

complete response vs ~50% in non 17p13 deleted 

CLL), a short progression free survival (PFS) (11.2 

months vs 51.8 months) and OS (38.1% at 36 

months).
29

 This is in line with the established 

importance of the wild-type TP53 protein in mediating 

the cytotoxicity of DNA-damaging agents including 

purine analogs.  

A number of prospective studies suggest that, in 

addition to 17p13 deletion, also TP53 mutations, even 

in the absence of 17p13 deletion, predict poor outcome 

in CLL. In the GCLLSG CLL4 trial (fludarabine vs 

fludarabine-cyclophosphamide) no complete response 

were observed in TP53 mutated CLL, and the median 

PFS (23.3 vs 62.2 months) and OS (29.2 vs 84.6 

months) were significantly shorter in the group with 

TP53 mutation.
30

 In the GCLLSG CLL8 trial 

(fludarabine-cyclophosphamide vs FCR), patients with 

TP53 mutations showed the lowest complete response 

and overall response rates (6.9% vs. 36.4% and 62.1% 

vs. 95.3%), translating into shorter PFS (12.4 months 

vs. 45 months) and OS (39.3 months vs not reached in 

all other patients).
44

 In the UK LRF CLL4 trial 

(chlorambucil vs fludarabine vs fludarabine-

cyclophosphamide), the complete response rate of 

TP53 mutated patients was only 5% with a 5-years PFS 

of 5% and a 5-years OS of 20%.31  

Based on these data, 17p13 deletion is the sole 

cytogenetic abnormality that is recommended to be 

tested by FISH in CLL patients requiring treatment.2 

Since CLL with TP53 mutations experience poor 

prognosis regardless of the presence of 17p13 deletion, 

the TP53 mutation analysis should be integrated into 

the evaluation of CLL patients before treatment 

initiation.
44

 CLL patients carrying TP53 alterations, 

regardless of whether mutated or deleted, should be 

redirected to different therapeutic regimens compared 

to the standard chemo/chemoimmuno-

therapies.2,33,35,44,46 

 

NOTCH1 Mutations. The NOTCH1 gene encodes a 

heterodimeric transmembrane protein that functions as 

a ligand-activated transcription factor with a high 

conserved pathway.
47

 When the NOTCH1 receptor 

interacts with its ligands through the extracellular 

subunit, two consecutive proteolytic cleavages of the 

protein are initiated and lead to pathway activation.
47,48

 

The S2 cleavage in the heterodimerization domain is 

performed by ADAM10, and is followed by the S3 

cleavage by the γ-secretase complex. Upon activation 

the cleaved intracellular portion of NOTCH1 (ICN) 

translocates into the nucleus where it modifies the 

expression of target genes, including the MYC 

oncogene. As a transcriptional factor, NOTCH1 plays 

an important role in a number of cellular functions 

during embryogenesis and in self-renewing tissues of 

the adult organism, including maintenance of stem 

cells, cell fate specification, proliferation, and 

apoptosis.48 One of the mechanisms of the NOTCH1 

signal suppression is operated through the PEST 

[proline (P), glutamic acid (E), serine (S), and 

threonine (T) rich] domain that directs the activated 

NOTCH1 towards proteosomal degradation.
47

 A major 

role of NOTCH1 in lymphoid cells in the adult 

organism is the commitment of hematopoietic 

progenitors to differentiate toward T lineage.
49

 

Conversely, in mature B-lymphocytes, NOTCH1 

signaling promotes terminal differentiation to antibody-

secreting cells.
50

 

NOTCH1 mutations were the first molecular lesion 

identified through massive parallel next generation 

sequencing in CLL by two independent groups.
10,11

 

NOTCH1 mutations are significantly more frequent in 

CLL with unmutated, rather than mutated, 
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immunoglobulin genes, are significantly enriched in 

CLL harboring trisomy 12, and identify a distinct 

clinico-molecular subgroup of CLL with deregulated 

cell cycle and short survival.
10-12,14,16,51-53

 

NOTCH1 mutations in CLL mainly clusters within a 

hotspot in exon 34, and are commonly represented by a 

single 2-bp deletion (c.7544_7545delCT) that accounts 

for ~80-95% of all NOTCH1 mutations in this 

leukemia (Figure 1).10-12,14,16,51-53 The predicted 

functional consequence of NOTCH1 mutations in CLL 

is the disruption of the C-terminal PEST domain 

resulting in activated NOTCH1 protein, impaired 

degradation and accumulation, and sustaining 

deregulated signaling.11 Consistent with this notion, a 

number of cellular pathways are specifically altered in 

CLL harboring NOTCH1 mutations.
11,52

  

Beside their pathogenetic role, NOTCH1 mutations 

also represent a new biomarker for the identification of 

poor risk CLL patients. NOTCH1 mutated patients 

have a rapidly progressive disease and a significantly 

shorter survival probability (21-45% at 10 years) 

compared to NOTCH1 wild type cases (56-66% at 10 

years).
10,11,14

 The poor prognosis associated with 

NOTCH1 mutations in CLL may be explained, at least 

in part, by a substantial risk (~40-50%) of developing 

Richter syndrome.10,11,14  

NOTCH1 is a potential therapeutic target in CLL. 

Treatment with γ-secretase inhibitors induces apoptosis 

of CLL cells by inhibiting the enzymatic S3 cleavage 

necessary for NOTCH1 activation.47,54,55 However, the 

limitations due to toxicity of γ-secretase inhibitors in 

the clinical setting suggest that alternative strategies 

may be needed for the therapeutic targeting of 

NOTCH1. 

 

SF3B1 Mutations. The spliceosome machinery, a 

complex of five small nuclear ribonucleoproteins 

(snRNPs), contributes to the formation of mature 

mRNA through the removal of introns in the precursor 

messenger RNA (pre-mRNA) of protein-encoding 

genes, and is involved in both normal and alternative 

splicing.56 Alternative splicing can generate numerous 

transcript variants from a single gene, contributing to 

genomic complexity and potentially to cancer.
57

 

SF3B1 is a core component of the U2 snRNP that 

recognizes the 3′ splice site at the intron-exon 

junctions.
56,58-61

 Structurally, the SF3B1 protein has 

two well-defined regions: i) the N-terminal amino acid 

region which contains several protein-binding motifs 

and functions as a scaffold to facilitate its interaction 

with other splicing factors; and ii) the C-terminal 

region which contains 22 non-identical tandem repeats 

of the HEAT motif that meander around the SF3b 

complex.56,58-61  

Whole genome/exome sequencing technologies 

allowed for the identification of SF3B1 as a recurrently 

mutated gene in CLL.12,13,16 SF3B1 mutations in CLL 

cluster in selected HEAT repeats of the SF3B1 protein, 

target a number of hotspots (codons 662, 666, 700, 

742), and are generally represented by missense 

substitutions (Figure 1).12,13,16 Notably, an identical 

spectrum of SF3B1 mutations has been identified in 

other hematopoietic tumors of the myeloid 

compartment.62 

The precise biological consequences of SF3B1 

mutations in CLL are currently unknown. However, the 

clustering of SF3B1 mutations within the HEAT 

domains suggests that they are selected to modify 

SF3B1 interactions with other proteins of the 

spliceosome complex, thus resulting in deregulated 

normal and alternative mRNA splicing.
12,16

 

Consistent with their accumulation in the more 

advanced phases of the disease, SF3B1 mutated 

patients show a significantly shorter overall survival 

(34-48% at 10 years) compared to wild type cases (60-

73% at 10-years).12,13,16  

  

BIRC3 Abnormalities. In CLL, activation of the NF-

κB pathway contributes to the acquisition of a 

chemorefractory clinical phenotype and correlates with 

poor outcome.63-67 The Baculoviral IAP repeat 

containing 3 (BIRC3) gene is one of the components of 

a protein complex that negatively regulates the 

MAP3K14 serin-threonine kinase, the downstream 

activator of non-canonical NF-κB signaling.63-66 

BIRC3 was found to be recurrently disrupted by 

mutations, deletions, or a combination of mutations and 

deletions in CLL patients.15 BIRC3 inactivating 

mutations and a fraction of BIRC3 deletions cause a 

truncation of the C-terminal RING domain of the 

BIRC3 protein, essential for ubiquitination, and the 

following proteasome degradation, of MAP3K14, and 

drives constitutive non-canonical NF-κB activation 

(Figure 1).15 

The BIRC3 gene maps to 11q22.2, approximately 

6Mb centromeric to the ATM locus. The identification 

of BIRC3 involvement in CLL might be important for 

elucidating the molecular genetics of 11q22-q23 

deletion, a frequent cytogenetic abnormality predictive 

of poor outcome. In fact, although ATM has been 

regarded as the relevant gene of this chromosomal 

abnormality, biallelic inactivation of ATM does not 

exceed ~30% of cases with 11q22-q23 deletion.36-39 

The presence of an additional tumor suppressor in the 

11q22-q23 region has been postulated,
40

 and BIRC3 

implicates a suitable candidate. 

From a clinical standpoint, BIRC3 lesions contribute 

to clinical aggressiveness and fludarabine 

refractoriness in CLL.15 Indeed, BIRC3 lesions identify 

a subgroup of CLL displaying poor survival
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Figure 1. NOTCH1, SF3B1, and BIRC3 mutation distribution in CLL.

SF3B1 (panel B), and BIRC3 (panel C) proteins, with their key functional domains. Symbols indicate the position of the mutations. 

Mutations are from the Novara CLL mutation database and from the COSMIC database (v61). 

 

(median 3.1 years) similar  to that associated with 

TP53 abnormalities.
15

  

In CLL, fludarabine refractoriness may be explained 

by TP53 disruption in ~40% of patients, while ~60% 

high risk CLL do not present TP53 abnormalities.

Intriguingly the distribution of BIRC3 disruption and 

TP53 abnormalities is mutually exclusive and 

abnormalities can recapitulate the genetics of ~40% 

chemorefractory and TP53 wild type CLL. 
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