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Abstract. ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34. 

This protease specifically hydrolyzes von Willebrand factor (VWF) multimers, thus causing VWF 

size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with 

ThromboSpondin type 1 repeats (ADAMTS) family, involved in proteolytic processing of many 

matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a 

disintegrin domain, several thrombospondin type 1 (TSP1) repeats, a cysteine-rich domain, a 

spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone 

morphogenetic protein) domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606) in 

the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size 

of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are 

prone to form with platelets clumps, which cause severe syndromes called thrombotic 

microangiopathies (TMAs). In this review, we a) discuss the current knowledge of structure-

function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b) address the 

recent findings concerning proteolytic processing of VWF multimers by different proteases, such as 

the leukocyte-derived serine and metallo-proteases and c) indicate the direction of future 

investigations.

Introduction. The discovery of the metalloprotease 

referred to as ADAMTS13 (A Disintegrin-like And 

Metalloprotease with ThromboSpondin type 1 motif 

13), as many other examples in biomedical research, 

found its way in the attempt to address the issue 

concerning the pathogenesis of severe forms of 

thrombotic microangiopathies (TMAs). The latter are a 

group of severe diseases characterized by deposition of 

blood platelet thrombi in the microcirculation, 

responsible for potentially fatal multi-organ failure. 

Moake et al.
1
 reported in 1982 the first evidence that 

the pathogenesis of the main form of microangiopathy, 

that is Thrombotic Thrombocytopenic Purpura (TTP), 

arises from a defect in proteolytic processing of von 
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Willebrand factor (VWF), a multimeric glycoprotein 

with very high molecular weight that plays an essential 

role in platelet-dependent hemostasis. In 1996, 2 

groups independently reported a metalloprotease that 

specifically cleaves VWF at the Tyr1605-Met1606 

bond in the A2 domain.
2,3

 The proteolytic activity 

required VWF in a denatured conformation, achieved 

by preincubation with either low-concentration 

guanidine-HCl
3
 or urea,

2
 or by exposure to high shear 

stress in vitro.
3
 The proteolysis also required divalent 

cations such as Ba2+, Zn2+, Ca2+ or Co2+.
3
 A few 

years later, the protease was cloned, purified and 

characterized, and several groups identified the VWF-

cleaving protease as ADAMTS13, a novel member of 

the ADAMTS family of metalloproteases.
4-8

 

Considerable evidence now implicates the haemostatic 

protein VWF as a key component in TTP 

pathogenesis.
9
 VWF is an abundant plasma 

glycoprotein synthesized in all vascular endothelial 

cells and megakaryocytes as a precursor containing a 

signal peptide and large propeptide.
10,11

 Endothelial cell 

VWF is secreted via both constitutive and regulated 

pathways. In response to a variety of stimuli, VWF is 

released from endothelial cells as ultra-large (UL)-

VWF, which can be up to approximately 20,000 kDa in 

size
12,13

 and are the most adhesive and reactive forms 

of VWF. UL-VWF form string-like structures attached 

to the endothelial cell surface, perhaps through 

interaction with P-selectin.
14

 Under fluid shear stress, 

the UL-VWF strings are cleaved by ADAMTS13 at the 

Tyr1605-Met1606 bond in the A2 domain
3
 to generate 

the range of VWF multimer sizes that normally 

circulate in the blood. VWF serves as the primary 

adhesive link between platelets and subendothelium 

and it also carries and stabilizes coagulation factor VIII 

(FVIII) in the circulation. These hemostatic functions 

depend upon the ability of VWF to bind circulating 

factor VIII, subendothelial collagens, platelet 

glycoprotein Ibα (GPIbα) and integrin αIIbβIII, but the 

regulation of platelet adhesion depends upon cleavage 

of VWF multimers by ADAMTS13 (Figure 1).
15

 

However, VWF in plasma adopts a folded globular 

conformation that does not bind to platelet GPIbα and 

is not cleaved by ADAMTS13.
16

 Fluid shear stress,
17

 or 

binding to certain surfaces, changes the conformation 

of VWF so that it assumes an elongated form, 

disclosing the buried binding site for platelet GPIbα, 

localized in the A1 domain of the protein. Upon this 

physically-induced conformational transition, VWF 

multimers bind tightly to platelet GPIbα and, at the 

same time, can be recognized by ADAMTS13. A 

similar modulating effect in vitro is achieved by 

including antibiotic ristocetin or by denaturing reagents 

such as urea and guanidine-HCl.
2,3,18,19

 The stretched 

conformer of VWF, more prone to ADAMTS13 

proteolysis, is stabilized in vivo through the interaction 

with P-selectin.
20

 Inability to cleave the newly released 

UL-VWF multimers
1,21,22

 owing to hereditary or 

acquired deficiency of plasma ADAMTS13 activity 

may induce spontaneous VWF-dependent platelet 

adhesion and aggregation,
23

 leading to disseminated 

microvascular thrombosis as seen in patients with TTP.  

 
Figure 1. Scheme of von Willebrand factor monomer molecule with its functional domains. The prepro-VWF polypeptide is indicated with 

amino acids numbered from the amino- (aa 1) to carboxy-terminal portions (aa 2813). Binding sites are indicated for factor VIII (D' and D3 

domains), platelet glycoprotein Ibα (GPIbα) (A1 domain), collagen (A1 and A3 domains) and integrin αIIbβIII (RGDS sequence within the 

C1 domain). The cleavage site (Tyr1605-Met1606) for ADAMTS13 is located at the central A2 domain of von Willebrand factor. The 

locations of intersubunit disulfide bonds (S-S) are shown in the CK and D3 domains, which are important for the formation of VWF dimers 

and multimers, respectively. 

ADAMTS13 Structure and Function. The human 

ADAMTS13 gene is located on chromosome 9 at 

position 9q34. It spans 37 kb in length and contains 29 

exons.
6,8

 ADAMTS13 mRNA is approximately 5 kb 

and encodes a 1427 amino acid protein. Several 

alternatively spliced mRNA variants have been 

characterized; their significance remains unknown.
6,8

 

The predicted molecular weight of 145 kDa differs 

from the observed molecular mass of purified plasma 

ADAMTS13 (~190 kDa),
24,25

 and this difference is 

likely due to its extensive glycosylation.
26

 ADAMTS13 

is synthesized predominantly in liver,
6-8,25

 although 

variable expression has been observed in endothelial 

cells,
27,28

 endothelial glomerular cells
29

 megakaryocytes 

or platelets
30,31

 and secreted into plasma as an already 

active enzyme. Mutations in the ADAMTS13 gene
27

 

may result in a reduced or an aberrant secretion of 

ADAMTS13 protein into the circulation. Various 

truncated forms of ADAMTS13 are detectable in 

plasma,
32

 perhaps owing to alternative splicing of 
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ADAMTS13 mRNA or proteolysis of ADAMTS13 by 

serine proteases such as thrombin
33

 and leukocyte 

elastase.
34

 Human placenta and skeletal muscle 

synthesize a 2.4 kb ADAMTS13 mRNA.
8
 There are 

some evidences from in vivo
35,36

 and in vitro
36,37

 studies 

that ADAMTS13 mRNA and protein are produced in 

liver hepatic stellate cells. However, the contribution of 

hepatic stellate cells to plasma levels of ADAMTS13 

remains to be determined. Considering the large 

surface area of vascular endothelial beds, plasma 

ADAMTS13 might be derived mainly from endothelial 

cells even though each endothelial cell produces little 

amounts of ADAMTS13 compared to hepatic stellate 

cells.
27,28

 ADAMTS13 is the 13
th
 member of the 

ADAMTS family of zinc proteases, which is related to 

the large ADAM (A Disintegrin And Metalloprotease) 

family. The ADAMTS family of zinc metalloproteases 

contains 19 members that share the common structure 

of a hydrophobic signal sequence, a propeptide, a 

metalloprotease domain, a thrombospondin type 1 

(TSP1) repeat, a disintegrin-like domain, a cysteine-

rich domain and a spacer domain.
6,8

 In contrast to 

ADAM proteases, ADAMTSs lack EGF-like repeats 

and a transmembrane domain and, therefore, are 

secreted rather than membrane bound enzymes. In 

addition, all ADAMTS family members possess one or 

more thrombospondin type 1 (TSP1) motifs
38

 and 

variable additional C-terminal domains. The carboxyl 

terminus of ADAMTS13 contains seven more TSP1 

repeats and two CUB domains, which are named after 

motifs first identified in Complement components C1r 

and C1s, sea urchin protein Uegf and Bone 

morphogenetic protein-1(Figure 2).
39  

Globally, the family of ADAMTS is composed of 

enzymes whose main functions include: (1) collagen 

processing; (2) cleavage of the matrix proteoglycans 

aggrecan, versican and brevican; (3) inhibition of 

angiogenesis; and (4) blood coagulation homoeostasis 

as the von Willebrand factor cleaving protease. Roles 

in organogenesis, inflammation and fertility are also 

apparent. Some ADAMTS genes have been found to 

show altered expression in arthritis and various types 

of cancer. For instance, ADAMTS2 cleaves the 

propeptide of collagen II, and mutations in this protein 

are responsible for the Ehlers-Danlos syndrome type 

VII C.
40

 Mutations in ADAMTS10 cause autosomal 

recessive Weill-Marchesani syndrome, a connective 

tissue disorder characterized by abnormalities of the 

lens of the eye, proportionate short stature, 

brachydactyly and joint stiffness.
41

 ADAMTS1, 

ADAMTS4 and ADAMTS5/11 (also known as 

aggrecanases) cleave the cartilage proteoglycan 

aggrecan and may play a role in inflammatory joint 

disease.
42-44

 Interestingly, an anti-inflammatory role has 

also been recently attributed to ADAMTS13.
45

 Since 

the isolation and cloning of the ADAMTS13 cDNA, 

several laboratories have expressed recombinant 

ADAMTS13 in cell culture. Recombinant ADAMTS13

 
Figure 2. Schematic diagram of ADAM, ADAMTS and ADAMTS13 structure. The structural domains are indicated: signal peptide (S), 

propeptide (P), metalloprotease (M) (location of zinc-binding motif shown in red), disintegrin domain (Dis), first thrombospondin type 1 

(TSP1) repeat (1), cysteine-rich domain (Cys-R), spacer domain (Spa), the second to eighth TSP1 repeats(2) through (8) and two CUB 

domains (C1 and C2). The metalloprotease domain is the catalytic center that cleaves von Willebrand factor (VWF). The proximal carboxyl-

terminal domains from Dis to Spa interact with the A2 domain of VWF. More distal carboxyl-terminal domains (TSP1 2–8) interact with 

VWF under fluid shear stress. EGF indicates epidermal growth factor-like repeat and TM, transmembrane domain. 
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cleaves VWF in vitro, providing a formal 

demonstration that ADAMTS13 is indeed the VWF-

cleaving protease identified in earlier studies.
25,26

 The 

detailed structure of the full-length ADAMTS13 

molecule is not yet solved. Only recently, the X-ray 

diffraction map of the recombinant ADAMTS13 

fragment composed of the thrombospondin-1 (TSP-1) 

type-1 repeat domain (T), the cysteine-rich (C) region, 

and the spacer domain (S) has been reported.
46

 Very 

recently, the crystal structure of the P475S mutant of 

ADAMTS13-DTCS (DTCS-P475S, residues 287-685) 

was solved and compared with the wild-type 

structure.
47

 The propeptide of ADAMTS13 contains 41 

amino acids, in contrast to the approximately 200 

amino acids that comprise the propeptides of most 

other members of ADAM and ADAMTS family.
48,49

 

Like other proteases, ADAMTS13 propeptide presents 

a typical proprotein processing site (RQRR), which has 

been shown to be a furin cleavage site.
8
 At variance 

with what has been observed for other 

metalloproteases, deletion of the ADAMTS13 

propeptide does not impair secretion or enzymatic 

activity, demonstrating that the propeptide is not 

required for folding or secretion and likely does not 

confer enzymatic latency.
49

 Moreover, it has been 

shown that a mutation in the furin consensus 

recognition site leads to secretion of an active pro-

ADAMTS13.
49

 Detection of anti-propeptide antibodies 

in some patients with TTP suggests that not all plasma 

ADAMTS13 has this sequence removed.
50

 The 

metalloprotease domain of ADAMTSs consists of 

about 200 amino acids. The structural relationship of 

ADAMTSs to other zinc matrix metalloproteinases 

(MMPs) is shown in Figure 3. ADAMTSs are 

reprolysin-like proteins, which, together with ADAMs, 

MMPs, astacins and serralysins, constitute the 

metzincin superfamily. The catalytic domains of 

ADAMTS proteinases share a high degree of similarity 

and contain the zinc-binding sequence, in which the 

catalytic Zn2+ ion is coordinated by the three histidine 

residues, “H224EXXHXXGXXHD235”, where ‘X’ 

represents any amino acid residue and the conserved 

aspartic acid residue distinguishes the ADAMs and 

ADAMTSs from other metalloproteinases. The 

glutamate following the first zinc-binding histidine has 

a catalytic role,
51

 polarising a water molecule through 

hydrogen bonding, which is stabilised by coordination 

with the Zn2+ ion and is responsible for the 

nucleophilic attack on the carbonyl of the substrate 

scissile peptide bond.
52,53,54

 As in all MMPs and 

adamalysins, the zinc-binding sequence is followed a 

short distance from the C-terminal end (10-20 amino 

acids after the third histidine),
55

 by a conserved 

methionine residue, an active-site arrangement that has 

been termed 'metzincin-type'. This methionine 

constitutes the 'Met-turn', a tight turn arranged as a 

right-handed screw that seems to serve an important 

function in the structure of the active site.
53

 It could 

form indeed a hydrophobic base beneath the catalytic 

Zn
2+

. Different studies using C-terminal truncations of 

recombinant ADAMTS13 have shown that the 

metalloprotease domain alone was not able to cleave 

plasma VWF.
49,56,57

  

Truncation of ADAMTS13 within or distal to TSP1 

results in generation of enzymes that retain VWF-

cleaving activity in vitro, while truncations proximal to 

TSP1 (within the protease, TSP1, cysteine-rich or 

spacer domains) result in an inactive protein. These

 

Figure 3. The zinc metalloproteinases of the zincin type that have 

the minimal catalytic zinc-binding motif containing two histidine 

residues flanking the catalytic glutamate, HEXXH, comprise three 

superfamilies: the gluzincins, the aspzincins and the metzincins. 

Within the metzincins, the major families are the matrixins or 

matrix metalloproteinases (MMPs), the reprolysins (also known as 

adamalysins, which includes some ADAM (a disintegrin and 

metalloproteinase) and ADAMTs (ADAMs with thrombospondin 

repeats proteins) and the astacins. Metzincins have an 

HEXXHXXGXXHZ…M motif with three histidine residues 

binding the zinc ion and an invariant methionine turn in the active 

site that generates the name metzincins. X represents any amino 

acid residue and Z indicates a subfamily specific conserved residue, 

which is D for both ADAM and ADAMTS members. (Inset) 

Homology modeling of the metalloproteinase (M) domain of 

ADAMTS-13. The structure was generated using the program 

RasMol vs. 2.7.5. The structure of the polypeptide chain 80-290, 

corresponding to the M-domain of ADAMTS13 was modeled by 

homology on the crystallographic structure of ADAMTS4 solved at 

2.80 Å (PDB entry code: 2RJP). Zinc ion (green) is shown together 

with the three catalytic His-residues. The “Met-turn” typical of the 

metzincin family is also indicated.  

http://www.rcsb.org/pdb/explore/explore.do?structureId=2RJP
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results indicate that the protease domain alone, even if 

functional, is not sufficient to recognize and 

specifically cleave the VWF cleavage site, suggesting 

that sequences within the region spanning the protease 

domain to the spacer domain of ADAMTS13 are 

necessary for VWF-cleaving activity, at least in vitro. 

The mechanistic aspects driving the molecular 

recognition and cleavage of VWF by ADAMTS13 

have been recently unraveled in elegant studies.
33,58 

These studies showed that the domains between the 

metalloprotease and the spacer domain are critical for 

substrate recognition and cleavage because the mutants 

lacking one or more of these domains do not cleave 

multimeric VWF.
57

 Modulation of the 

ADAMTS13/VWF interaction is critical for an 

efficient proteolysis and involves both VWF and 

ADAMTS13. The latter binds to VWF under static 

conditions and under both venous (2.5 dyn/cm
2
) and 

arterial (30 dyn/cm
2
) shear stress. This interaction, 

however, is unproductive for proteolysis unless shear 

stress is high enough to stretch VWF and expose the 

buried A2 domain for cleavage.
17,59

 Under static 

conditions, ADAMTS13 cleaves VWF only under 

denaturing conditions,
2,3

 or in the presence of the 

antibiotic ristocetin,
60

 whereas under conditions of high 

shear stress found in the microvasculature, VWF 

proteolysis is extremely rapid and occurs in the 

absence of any chemical effector.
3,17,61

 Fluid shear 

stress alters the conformation of VWF so that the 

binding and catalysis of ADAMTS13 takes place at the 

VWF A2 domain.
62

 High shear stress causes micro- 

and macro-conformational changes in VWF.
63

 These 

hydrodynamic forces cause conformational changes in 

VWF that expose a binding site in the A1 domain for 

the platelet glycoprotein Ib (GPIb) molecule,
64

 

facilitating the process of platelet adhesion to the 

subendothelium. It has to be noted that, once secreted 

by endothelial cells, UL-VWF is trimmed by 

ADAMTS13, with production of smaller VWF 

fragments In the absence of ADAMTS13 activity, 

either due to genetic mutations or formation of anti-

ADAMTS13 autoantibodies, a life-threatening disease, 

referred to as thrombotic thrombocytopenic purpura 

(TTP), does occur causing an uncontrolled 

microvascular thrombosis (see below).
65

 The unique 

requirement of shear forces, which permit the cleavage 

by ADAMTS13 of the Tyr1605-Met1606 peptide 

bond, finely regulates ADAMTS13 activity and 

impedes an uncontrolled VWF proteolysis from taking 

place. Moreover, the VWF-cleaving activity may be 

positively or negatively modulated by the other 

structural elements of VWF:
66

 heparin sulfate, platelet 

GPIbα, sodium chloride
60

 and inflammatory 

cytokines.
67

 Other factors may influence ADAMTS13 

and VWF interactions, such as inflammatory 

cytokines
67

 and hemolysis products.
68

 It cannot be 

ignored that several Authors have shown that leukocyte 

proteases such as cathepsin G, elastase, proteinase 3 

and MMP9 are able to hydrolyze VWF near or even at 

the same site where ADAMTS13 proteolyzes the VWF 

molecule in the A2 domain.
69

 Interestingly, while 

oxidative modification of VWF Met1606 strongly 

inhibits proteolysis by ADAMTS13,
70,71

 it may even 

accelerate the cleavage by leukocyte serine proteases.
72

 

Recent studies showed the potential of leukocyte zinc- 

and serine proteases present in thrombi to inhibit the 

adhesion of VWF to platelets under high shear stress 

and proved that this phenomenon strictly depends on 

VWF proteolysis.
73

 This alternative control of VWF 

function is likely linked to local compartments in blood 

clots, where the serine proteases are relatively 

protected against their abundant plasma inhibitors, such 

as 2-macroglobulin and antithrombin.  

 

ADAMTS13 and its Role in the Pathogenesis of 

Thrombotic Microangiopathy, a Pleiomorphic 

Clinical Setting. Thrombotic macroangiopathies 

(TMAs) refer to the disorder of diffuse microvascular 

thrombosis involving the capillary and arteriolary bed 

of the brain, kidney and other organs. The patients 

typically present with 1) severe thrombocytopenia 

(<50,000 plts/µl), 2) non-immune hemolysis with 

presence of schistocytes on blood smears and 3) 

variable neurologic abnormalities reaching even coma 

and/or acute renal failure.
74

 Thrombocytopenia results 

from peripheral consumption of platelets in the 

microvasculature, whereas erythrocyte fragmentation 

and hemolysis stem from mechanical injury induced by 

passage of erythrocytes through platelet thrombi under 

abnormally high shear stress in the microvasculature 

(Figure 4). TMAs area group of severe clinical settings 

that, without treatment, undertake a rapid worsening 

and death in most cases. Plasma exchange or infusion 

is the mainstay of treatment for most TMAs. As 

anticipated above, the pathogenesis of complex 

syndromes such as TMAs is mostly explicable on the 

basis of the deficiency of ADAMTS13. However, it 

should be noted that TMAs are not monogenetic 

diseases. Thus, the clinical manifestations of this group 

of disorders are highly variable and heavily affected by 

the co-existence of other genetic and environmental 

modifiers. This group of TMAs is constituted by 

different clinical settings referred to as Thrombotic 

Thrombocytopenic Purpura (TTP), hemolytic uremic 

syndrome (HUS), diarrhea-associated HUS or atypical 

HUS. Unfortunately, any existing clinical or 

pathological classification of TMAs is based on 

assumptions that have never been validated. The 

greatest uncertainty has involved deciding whether
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Figure 4. Pathogenesis of TMA caused by ADAMTS13 deficiency. A) Von Willebrand factor (VWF) multimers, produced and stored in the 

Weibel-Palade bodies of the endothelial cells, are secreted and adhere to endothelial cell membranes via GpIb and P-selectin. Platelets 

adhere to VWF multimers through platelet membrane glycoprotein GPIb. In flowing blood under high shear stress, VWF in the platelet-

rich thrombus is in a stretched conformation and is trimmed by ADAMTS13, which limits thrombus growth. B) If ADAMTS13 is absent or 

inhibited by autoantibodies, VWF-dependent platelet accumulation is uncontrolled and may cause microvascular thrombosis, formation of 

schistocytes and, ultimately, TMA. 
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certain cases represent examples of TTP or HUS. A 

rule of thumb has suggested that HUS may usually be 

distinguished from TTP because HUS occurs 

predominantly in individuals younger than 10 years, 

while TTP occurs predominantly in adults. However, 

this differentiation is not reliable, as either condition 

can occur in either group. Other clinical features aid in 

distinguishing the conditions at any age of onset. For 

instance, renal manifestations are usually more 

prominent in HUS than neurological ones, whereas 

neurological manifestations are usually more 

prominent in TTP than renal ones. Fever precedes TTP 

more commonly than it precedes HUS.
75

 Despite these 

distinctions, continued recognition of borderline or 

atypical cases has generated doubts about the 

possibility that objective criteria other than age are able 

to distinguish "atypical" HUS from "atypical" TTP. 

This problem led to the application of the 

unsatisfactory term TTP-HUS to mean an indistinctly 

defined and clinically heterogenous collection of cases 

between classic TTP and classic HUS. The recognition 

of phenotypic instability in recurrent cases encouraged 

use of this term. For example, 1 patient had 5 episodes 

manifesting the HUS phenotype before the age of 15 

years and 9 episodes manifesting the TTP phenotype 

after 20 years of age.
76  

It should be noted that TTP and HUS share the 

fundamental pathologic feature of arteriolar thrombosis 

with vessel wall intimal swelling and fibrinoid 

necrosis. However, the composition of the thrombi 

differs histopathologically, at least in well-defined 

cases of TTP and HUS. Those of such well-defined 

TTP cases contain degranulated platelets and von 

Willebrand factor. Those of Shiga toxin–provoked 

HUS are rich in fibrin and thus arise from activation of 

the plasma coagulation cascade.
4
 

Fortunately, recent advances in understanding the 

pathogenesis of TTP somewhat clarified the boundaries 

between microangiopathic disorders with renal or 

neurological manifestations, and they have produced 

useful diagnostic tests for some forms of clinically 

defined TTP.  

A) Relationship Between ADAMTS13 and Occurrence 

of TMAs. Investigations have demonstrated a high 

degree of relevance in the relationship of ADAMTS13 

to TTP. These investigations defined a heritable form 

of TTP with severe (<5%) ADAMTS13 activity 

deficiency and an acquired form due to the elaboration 

of antibodies directed at 1 or more ADAMTS13 

epitopes.
77 

 

However, many thrombotic microangiopathies (TMAs) 

are not associated either with severe ADAMTS13 

activity deficiency or with antibodies that block 

ADAMTS13 activity. This class of patients may 

represent >30% of all TMA patients.
16

 In some 

instances, the clinical syndrome is indistinguishable 

from typical TTP. At autopsy, widespread hyaline 

thrombi, accompanied by variable fibroblastic 

infiltration and endothelial overlay, are found in the 

terminal arterioles and capillaries of multiple organs. 

The thrombi are found most extensively in the heart, 

brain, kidney, pancreas, spleen, mesentery and adrenal 

gland, and are composed primarily of platelets and von 

Willebrand factor.
78-80

 A small amount of fibrin may be 

present surrounding the amorphous or granular 

materials. In older lesions, hyaline deposits may be 

seen in the sub-endothelial layers of capillaries and 

between the endothelium and muscular layers of 

arterioles. Pre-occlusive pseudoaneurysmal dilatation 

may also be present. Fibrinoid necrosis and vascular or 

perivascular inflammatory cell infiltration are 

characteristically absent or minimal. Some cases, 

especially those in adults, are associated with 

promoting factors that are associated with the 

development of typical hereditary or acquired TTP. 

Recent schemes have used the identification of such 

promoting factors to classify TTP-like thrombotic 

disorders without severe or acquired abnormalities of 

ADAMTS13 function, as just defined. These entities 

tend to occur in adults and sometimes manifest features 

that occur along a clinical spectrum between TTP and 

HUS. Many of these illnesses cannot be distinguished 

by using currently available laboratory tests, except 

when the underlying etiologic illnesses are 

symptomatic. These conditions share with TTP and 

HUS the fundamental finding of thrombocytopenic and 

hemolytic TMA on peripheral blood smear. In the 

following paragraphs, we will treat only the 

ADAMTS13-related forms of TMAs/TTP. These 

syndromes include: 1) the congenital and 2) acquired 

deficiency of the metalloprotease. Finally, we will 

mention a recently discovered pathogenetic 

mechansisms that can be responsible for accumulation 

of UL-VWF multimers and promote forms of TMAs in 

cardiovascular and metabolic disorders by perturbing 

the VWF/ADAMTS13 interaction. 

B) Congenital ADAMTS13 Deficiency. Many studies in 

different ethnic populations have demonstrated the 

presence of ADAMTS13 mutations in patients with 

TTP.
16,26,48,68,81-106

 Some aspects emerging from studies 

of ADAMTS13 congenital deficiency in mice could 

help to unravel the role of ADAMTS13 and UL-VWF 

multimers in the pathogenesis of TMAs. For instance, 

inactivation of the ADAMTS13 gene in mice failed to 

generate the phenotype of TTP microvascular 

thrombosis until the ADAMTS13 null allele was 

transferred to a particular mouse strain, CASA/Rk, that 

has increased levels of VWF.
107,108

 Nevertheless, cross-

breeding studies showed that the development of TTP 

is independent of mouse plasma VWF levels. In 
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CASA/Rk mice with homozygous ADAMTS13 null 

alleles, spontaneous thrombosis and death occur in 

post-neonatal life.
107

 Only administration of shiga toxin 

is able to induce a massive secretion of UL-VWF 

multimers from endothelial cells.
109

 From a clinical 

standpoint, there is no evidence of antecedent shiga 

toxin exposure in patients of TTP. Only a small 

fraction of TTP patients has elevated plasma VWF 

levels. Thus, the relevance of the shiga toxin-

ADAMTS13-deficient mouse model to either TTP or 

shiga toxin-associated HUS remains uncertain. We can 

only speculate that the lack of a thrombotic phenotype 

in some mouse strains with severe deficiency of 

ADAMTS13 due to its gene inactivation suggests in 

these strains the presence of modifiers that affect the 

response of VWF to shear stress. To date, about 80 

mutations responsible for hereditary TTP have been 

identified in the ADAMTS13 gene.
16,26,48,68,81-106

 Seven 

are splice mutations, ten frameshift deletions, four 

frameshift insertions, eleven nonsense mutations and 

the remaining 45 mutations lead to codon changes. 

Moreover, numerous Single Nucleotide 

Polymorphisms (SNPs) have been recognized in recent 

years: eight of these SNPs are expressed and affect 

expression, secretion and activity of the enzyme, 

whereas eighteen are silent. The mutated sites in 

ADAMTS13 are distributed across many exons and 

introns throughout the gene. The absence of clusters 

(“hot-spots”) of mutations within the metalloprotease 

domain implies structural and functional importance of 

other regions besides the catalytic site. This finding is 

in-line with the observed relevance of exosites in 

ADAMTS13 in the molecular recognition and 

proteolytic processing of VWF
49,64,110

 under both static 

and high shear rate conditions (see above). In patients 

with hereditary TTP, homozygous or compound 

heterozygous mutations of the ADAMTS13 gene lead to 

severe ADAMTS13 deficiency. Globally, the affected 

residues span the entire spectrum of the ADAMTS13 

gene. Figure 5 shows the principal mutations 

discovered along the ADAMTS13 gene. Mutations of 

the ADAMTS13 gene may cause impaired protein 

synthesis, secretion or proteolytic activity, depending 

on its localization, as determined in numerous site-

directed mutagenesis and expression studies. 

Heterozygous individuals have ADAMTS13 activity at 

40–70% of normal values, while a TTP phenotype is 

present in more than 90% of the patients with double 

heterozygous or homozygous mutations. However, it 

may be predicted that variable phenotypic severity of 

TTP may arise from the various ADAMTS13 

mutations.
111

 Only a few mutations have been 

described in more than one pedigree. A notable 

exception is 4143dupA, which has been described in

 
Figure 5. Linear map of the location of ADAMTS13 mutations found in patients with congenital thrombotic thrombocytopenic purpura 

(TTP) [Upshaw-Schulman syndrome (USS)]. The missense mutations, nonsense mutations (red) and single nucleotide polymorphisms 

(SNPs) (green) are shown above the domain structure of ADAMTS13. The mutations that result in alternative splicing of ADAMTS13 

mRNA or frameshifts are listed under the domain structure of ADAMTS13. S indicates the signal peptide; P, propeptide; M, metalloprotease 

(location of zinc-binding motif shown in red); Dis, disintegrin domain; 1, first thrombospondin type 1 (TSP1) repeat; Cys-R, cysteine-rich 

domain; Spa, spacer domain; 2 through 8, the second to eighth TSP1 repeats; C1 and C2, two CUB domains (for complement C1r/C1s, Uegf, 

Bmp1 domain) §p.[C322G (+) T323R (+) F324L]. 
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multiple pedigrees of Northern and Central Europe and 

in Turkey. Haplotype analysis suggests that many, if 

not all, of the 4143dupA mutant alleles probably 

originated from a common ancestry.
87 

Why this 

particular allele is much more frequent than other 

mutant alleles remains an unanswered question. Other 

ethnical characteristics concern one ADAMTS13 

variant allele, 1423C>T (P475S), found in Japanese 

(5.1%), Koreans (4%) and Chinese (0.5–1.7%) but not 

detected among Caucasians or African Americans.
26,112

 

This polymorphism had raised considerable interest 

because in expression studies this mutation markedly 

reduces the activity of ADAMTS13 to approximately 

10% of control, raising the possibility that partial 

deficiency of ADAMTS13 deficiency may be quite 

common among Northeast Asians. Nevertheless, this 

prediction was not correct, as more recent 

investigations have shown that carriers of the P475S 

polymorphism have only a minor decrease (10%) of 

the ADAMTS13 activity and revealed that the 

previously reported low activity of the P475S variant 

resulted from the effect of high urea concentration used 

in the ADAMTS13 activity assay.
113

 Thus, this mutant 

might have only an abnormal stability. Recently, a 

novel mutation causing a severe ADAMTS13 

deficiency, p.E735X, has been detected in a 2 year old 

Tunisian child presented with chronic 

thrombocytopenic purpura, which failed to respond to 

corticosteroids.
114

 

C) Inhibitors of ADAMTS13. A strong deficiency of 

ADAMTS13 activity can also be associated to 

development of auto-antibodies against the protease. 

The formation of IgG or IgM anti-ADAMTS13 

antibodies may be responsible for the onset of TMAs 

idiopathic or secondary to drugs, pregnancy or diseases 

such as infections, cancers and autoimmune 

diseases.
21,115

 In patients with acquired TTP, deficiency 

of ADAMTS13 results from autoimmune inhibitors of 

ADAMTS13, which either inhibit its catalytic activity 

or induce a rapid clearance from the circulation.
16,116-121

 

Similar to other autoimmune disorders, the etiologies 

of acquired TTP are unknown and TTP patients often 

exhibit positive autoimmune reactions to different 

target antigens [], 
117

 suggesting that defective immune 

regulation may contribute to the development of TTP. 

A defective regulation of T-reg and tolerogenic 

dendritic cells may be responsible for the occurrence of 

anti-ADAMTS13 antibodies, in analogy with what has 

been shown in other autoimmune coagulation 

inhibitors, such as anti-FVIII antibodies.
122

 HIV 

infection may also be a risk factor for TTP, although 

this association has not been confirmed by all 

Authors.
123

 The inhibitors are more frequently IgG, 

although occasional production of IgA and IgM 

antibodies has been described. In a recent study, IgG(4) 

was found to be the most prevalent IgG subclass (90%) 

in 58 patients with acquired TTP, followed by IgG(1) 

(52%), IgG(2) (50%) and IgG(3) (33%).
124

 These 

studies also showed that IgG(4) may be found either 

alone (33%) or with other IgG subclasses (67%).
124

 

IgG(4) was not detected in 10% of the patients. 

Patients with high IgG(4) levels and undetectable 

IgG(1) are more prone to relapse than patients with low 

IgG(4) levels and detectable IgG(1) []. 
124

 Remarkably, 

a rising ADAMTS13 inhibitor level may be associated 

with switching of the IgG subclasses, suggesting that 

cytokine dysregulation may be responsible for the 

rising inhibitor levels observed in some cases of 

TTP.
125

 Epitope mapping studies showed that the 

spacer domain,
33,50,126

 specifically residues T572-N579 

and V657-G666,
33

 comprise a common antigenic core 

region that is a relevant target for ADAMTS13 

antibodies in TTP. Notably, the proteolytic activity of 

ADAMTS13 variants truncated upstream of the Cys-

rich domain is not generally inhibited by the inhibitors 

of patients with TMAs. These non-inhibited 

ADAMTS13 recombinant constructs may be used to 

overcome, at least in part, the difficult management of 

patients with high inhibitor levels. The levels of the 

ADAMTS13 inhibitors tend to be low 

(<10 U/mL),
118,127

 often receding to even lower or 

undetectable levels within weeks or months. Such 

characteristics of the ADAMTS13 inhibitors suggest 

that the immune response is induced by exposure to 

exogenous antigens with molecular mimicry to 

ADAMTS13. The level of anti-ADAMTS13 inhibitors 

determines the efficacy of therapeutic strategies, 

particularly plasma exchange, aimed at eliminating 

their pathologic effects. Usually, ADAMTS13 

inhibitors, measured by the Bethesda assay in clinical 

laboratories,
128

 have low titers (<10 Bethesda units/ml) 

and self-limited course. However, if the level of anti-

ADAMTS13 inhibitors is high, the treatment may 

fail.
125

 Moreover, refractory TMA forms, characterized 

by persistent anti-ADAMTS13 inhibitors, have also 

been reported in patients requiring long-term plasma 

exchange treatment and immunosuppressive therapy 

with rituximab.
129

 

 

The Role of VWF-ADAMTS13 Interaction in Other 

Arterial Thrombotic Diseases. It has been suggested 

that VWF plays an important role in the pathogenesis 

of arterial thrombotic disorders. Previous studies have 

shown the relevance of platelets and VWF in the 

initiation of atherosclerotic plaque formation. Both 

inactivation of VWF and inhibition of VWF-GP1b 

interaction delay the formation of fatty streaks VWF. 

From a biological standpoint, it is likely that VWF 

contributes to the pathogenesis of early atherosclerotic 

lesions. Hence, many studies have investigated the 
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association between VWF plasma levels and the 

subsequent risk of cardiovascular disease. In the ARIC 

study, the relative risk (RR) for coronary artery disease 

(CHD) for the highest vs. the lowest tertiles of VWF 

levels was approximately 1.3.
130,131

 Moreover, VWF 

was found to play a relevant role in thrombotic 

microangiopathies occurring in diabetes mellitus.
132

 

More recently, compelling evidence has emerged about 

the association of high VWF levels with occurrence of 

ischemic stroke, particularly in the cardioembolic and 

cryptogenetic subtypes.
133,134

 Recently a relative 

inhibition of VWF-ADAMTS13 interaction linked to 

oxidative modification of VWF in some clinical 

settings such as diabetes mellitus and end stage renal 

disease has been shown to be strongly associated to 

enhanced incidence of thrombotic macro- and 

microangiopathies.
71,135,136

 

 

Future Directions. After the discovery that normal 

plasma contains a zinc protease able to specifically 

proteolyze VWF, the past decade has witnessed the 

most exciting advances in the history of studies on the 

pathogenesis of TMAs. However, many issues still 

need to be addressed. The knowledge of some 

mechanistic aspects of ADAMTS13 catalysis and its 

regulation, the development of sensitive and reliable 

assays in the clinical diagnostics of TMAs and the 

nature of modifiers of ADAMTS13 activity on VWF 

multimers in patients affected by TMAs require further 

improvement. From a biotechnological standpoint, 

industrial production of partially deleted ADAMTS13, 

non-suppressible by pathological auto-antibodies, may 

circumvent the difficulties that replacement therapies 

with recombinant full-length ADAMTS13 may 

encounter in patients with acquired TTP. Finally, basic 

research to clarify the immunological mechanisms of 

generation of ADAMTS13 inhibitors
137

 will aid in the 

discovery of new strategies able to improve the 

prevention, diagnosis and management of TMAs.  
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