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Abstract. The large multimeric glycoprotein Von Willebrand factor (VWF) is best known for its 

role in haemostasis; however in recent years other functions of VWF have been identified, 

indicating that this protein is involved in multiple vascular processes. We recently described a new 

role for VWF in controlling angiogenesis, which may have significant clinical implications for 

patients with Von Willebrand disease (VWD), a genetic or acquired condition caused by the 

deficiency or dysfunction of VWF. VWD can be associated with angiodysplasia, a condition of 

degenerative blood vessels often present in the gastrointestinal tract, linked to dysregulated 

angiogenesis. Angiodysplasia can cause severe intractable bleeding, often refractory to conventional 

VWD treatments. In this review we summarise the evidence showing that VWF controls 

angiogenesis, and review the angiogenic pathways which have been implicated in this process. We 

discuss the possible mechanisms though which VWF regulates angiopoietin-2 (Ang-2) and integrin 

αvβ3, leading to signalling through vascular endothelial growth factor receptor-2 (VEGFR2), one of 

the most potent activators of angiogenesis. We also review the evidence that links VWF with 

angiodysplasia, and how the newly identified function of VWF in controlling angiogenesis may pave 

the way for the development of novel therapies for the treatment of angiodysplasia in congenital 

VWD and in acquired conditions such as Heyde syndrome.  

 
Introduction. The presence of vascular abnormalities 

in von Willebrand disease (VWD) was first described 

in the 1960s, when Armand J. Quick, one of the 

pioneers in the study of coagulation, reported the 

presence of telangectasias, defined as skin and mucous 

lesions consisting of dilated small blood vessels that 

tend to bleed (rev in
1
). Since then, several groups have 

reported the presence of vascular malformation in 

VWD patients in various localizations, including nail 

bed,
2
 skin, prostate and most frequently angiodysplasia 

of the gastrointestinal tract.
3
 These lesions can be 

responsible for severe, intractable bleeding which is 

often not responsive to VWF replacement therapy and 

thus represent a significant unmet clinical challenge. 

Until recently, the pathological mechanism underlying 

vascular malformations in VWD was unexplained. 
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However the recent discovery that von Willebrand 

factor (VWF) regulates blood vessel formation
4
 has 

shed new light on this syndrome and opened new 

avenues for the treatment of angiodysplasia. In this 

review we will summarise the process that led to this 

discovery, its implications for vascular biology and for 

the treatment of patients with VWD. 

 

The Cellular and Molecular Basis of Angiogenesis. 

Angiogenesis (the formation of new blood vessels from 

pre-existing ones) is a complex process which involves 

a cascade of events that require fine spatial and 

temporal coordination (rev in
5
). The initial pro-

angiogenic stimulus, often a growth factor produced in 

response to hypoxia, activates selected endothelial cells 

(EC) in the pre-existing vascular plexus to undergo 

changes in polarity and cytoskeletal remodelling, 

inducing migration towards the source of the pro-

angiogenic stimulus. These cells, named tip cells, 

maintain contact with the adjacent EC, called stalk 

cells, which acquire a different phenotype.
6
 Stalk cells 

proliferate to support the elongation of the new sprout. 

Eventually tip cells come into contact with other tip 

cells and through their thin finger-like protrusions 

(filopodia) engage in a cell fusion process, which is 

facilitated by tissue macrophages.
7
 Blood flow 

eventually completes canalisation of the new vascular 

sprout (rev in
8
). In order to become functional, blood 

vessels undergo stabilization and maturation, with 

active remodelling of the newly formed network, 

recruitment of mural cells and deposition of 

extracellular matrix.
9
 The process requires coordination 

between EC and other vascular cells, in particular 

pericytes and smooth muscle cells.  

Growth factors driving the initiation of angiogenesis: 

Vascular endothelial growth factor (VEGF). A large 

and growing number of molecules involved in 

regulating angiogenesis have been identified. Some are 

crucial for the initiation and/or progression of the 

process and their deficiency or dysregulation is 

incompatible with vascular development. Many other 

regulators, however, contribute to downstream steps in 

this complex process; their defect may give rise to 

dysfunctional vessels rather than complete disruption 

of the vasculature (rev in
5,10

). The best characterised 

pro-angiogenic endothelial growth factor is vascular 

endothelial growth factor (VEGF), a major regulator of 

vasculogenesis and physiological angiogenesis during 

embryogenesis, as well as physiological and 

pathological angiogenesis in the adult (rev in
5,11

). The 

VEGF system is also required for lymphangiogenesis 

(rev in
12

). VEGF-A is the best characterised member of 

a family which also includes VEGF-B, VEGF-C, 

VEGF-D and placental-derived growth factor. These 

bind to the VEGF receptors (R), of which 3 members 

(VEGF-R1, -R2 and -R3) have been identified. The 

complexity of the network is further enhanced by 

splicing and proteolytic cleavage of the ligands (rev 

in
13

). The main receptor for VEGF in the vascular 

endothelium is VEGFR2, which is critical for vascular 

development as well as adult angiogenesis (rev in
14

). 

VEGF exerts many effects on the vascular 

endothelium, including promoting proliferation, 

migration and survival as well as increased 

permeability (rev in 
14

). Binding of VEGF-A to VEGF-

R2 on EC stimulates dimerization of the receptor and 

autophosphorylation of specific intracellular tyrosine 

residues, leading to activation of intracellular signalling 

cascades, which lead to cell survival, permeability, 

migration and/or proliferation.
14

 In vivo, VEGF 

promotes angiogenesis; however overexpression of 

VEGF leads to the formation of fragile capillaries, with 

a disrupted structure, reminiscent of angiomas or 

angiodysplasia.
15,16

 

Growth factors controlling quiescence and vascular 

stability: the Angiopoietins and Tie-2 system. Whilst 

VEGF controls the early phases of the formation of a 

new blood vessel, the system most clearly involved in 

controlling the maturation and stability of new blood 

vessels is that of Angiopoietins and the Tie-2 receptor. 

Angiopoietin (Ang)-1 is produced by non-EC, such as 

pericytes and mural cells that contribute to vascular 

stability. Ang-1 binds to the tyrosine kinase receptor 

Tie-2, which is mainly expressed on EC; Ang-1 

signalling through Tie2 receptor promotes survival, 

quiescence and stability of blood vessels. Ang-1 also 

has anti-permeability and anti-inflammatory functions 

(rev in
17

). As ever, the picture is complicated by the 

fact that in some experimental models Ang-1 has been 

shown to promote cell migration and angiogenesis, in 

apparent conflict with its pro-quiescence properties. An 

interesting model has been put forward which proposes 

that differences in the localization of Tie-2 receptors on 

EC and their cell surface partners determines whether 

this signalling pathway supports quiescence or 

angiogenesis.
18,19

  

VEGF and Ang-1 play essential and complementary 

roles in vascular development and angiogenesis. 

During embryogenesis, VEGF is required for the 

formation of the initial vascular plexus, whilst Ang-1 is 

necessary for the remodelling of this early vascular 

network into mature blood vessels.
20

 A similar 

interplay between these two systems seems to take 

place during adult angiogenesis: both VEGF and Ang-1 

are able to promote angiogenesis in vivo;
21

 however 

VEGF causes vascular permeability and tissue oedema, 

whilst Ang-1 contributes to the stabilization and the 

maturation of growing blood vessels.
22,23

 Furthermore, 

Ang-1 administration or overexpression in the dermal 

compartment can protect from the potentially lethal 
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actions of VEGF as a consequence of uncontrolled 

plasma leakage.
24

 Co-expression of VEGF and Ang-1 

has recently been proposed as a strategy to generate 

more stable new vessels.
25

 

Another crucial regulator of the 

quiescence/angiogenesis balance is Ang-2. Ang-2 is an 

antagonistic ligand of Tie-2, which competitively 

inhibits binding of Ang-1, priming the endothelium for 

activation and vascular destabilisation. Ang-2 appears 

to act synergistically with VEGF to promote 

angiogenesis.
26

 Contrary to Ang-1, Ang-2 is 

synthesised by EC and stored in organelles called 

Weibel Palade Bodies (WPB), from where it can be 

rapidly released upon cellular activation.
27

 So whilst 

Ang-1 acts as an agonist of Tie-2, promoting structural 

integrity of blood vessels, Ang-2 acts as a naturally 

occurring antagonist, promoting vessel destabilisation 

and growth, as well as inflammation.
28

 Depending on 

the levels of other growth factors, such as VEGF-A, 

Ang-2 can also promote vessel regression (rev in
29

). 

The angiopoietin-Tie-2 system is also an area of 

intensive research for the development of modulatory 

drugs (rev in
30

).  

Extracellular cues and cell adhesion receptors 

controlling angiogenesis: integrin αvβ3. Molecular 

interactions mediated by several adhesion receptors 

and signalling complexes between cells need to be 

coordinated to maintain the integrity of the vessel and 

ultimately to stabilise the newly formed capillary. The 

extracellular environment is crucial for physiological 

development of the nascent sprout interaction; cell 

surface receptors of the integrin family mediate 

adhesion to and signalling by the extracellular matrix 

(ECM). Integrins are heterodimeric transmembrane 

proteins involved in the interaction of cells with their 

extracellular environment. In response to extracellular 

cues, integrins are able to transmit so called “outside-

in” signals to the cell leading to the activation of 

signalling cascades via various pathways including 

those of cellular adhesion and migration. The 

extracellular conformation of integrins can also be 

modulated by intracellular processes and transmit so 

called “inside-out” signals leading to changes in the 

way the receptor interacts with its extracellular matrix 

environment and modulation of protease activity (rev 

in
31

). One integrin receptor in particular, αvβ3, which is 

expressed on EC and is the best characterised 

endothelial receptor for VWF, has been shown to play 

a crucial role in angiogenesis and is a therapeutic target 

for cancer. The expression of αvβ3 is up-regulated in 

tumour associated blood vessels
32

 and drugs targeting 

αvβ3 have shown some success in clinical trials (rev 

in
33

); however its role appears quite complex, since 

deficiency of this integrin in the mouse has been linked 

with increased VEGFR2-dependent angiogenesis.
34

 

Interestingly αvβ3 can associate with VEGFR2 and 

crosstalk between these receptors can stimulate 

reciprocal activation (rev in
35

). Ang-1 and -2 have been 

shown to be able to regulate integrin mediated cell 

adhesion
36

 and Ang-2 can modulate αvβ3 integrin 

signalling.
19,37

  

 

Angiodysplasia: Vascular Lesions Linked to 

Abnormal Angiogenesis. Angiogenesis plays a crucial 

role during embryonic development and in specific 

processes during adulthood, such as wound healing and 

the menstrual cycle. Excessive or insufficient 

angiogenesis has been linked to a growing number of 

diseases (rev in
38

), and over the last few decades major 

progress in the understanding of the cellular and 

molecular basis of the process has been achieved. In 

parallel to the scientific progress, there has also been 

intense drug development activity in the search for 

inhibitors or activators. The area of vascular 

malformations, however, has received less attention 

and the links with the pathways controlling 

angiogenesis are poorly understood. The term 

angiodysplasia defines vascular malformation, also 

named ectasia, which affects submucosal veins, 

mucosal venules and capillaries. The abnormal 

vascular plexus is fragile and the architecture is 

disrupted, with possible arteriovenous 

communications. Angiodysplastic lesions are most 

commonly observed in the gastrointestinal (GI) tract 

and are the most common cause of occult GI bleeding 

in subjects over 65. A firm diagnosis of angiodysplasia 

may be difficult to achieve, partly because bleeding 

may be intermittent and partly because not all lesions 

are accessible to endoscopy. Although angiodysplasia 

is most frequently located in the proximal large colon 

(80% of lesions) which is visible by conventional 

methods, 15% of lesions are located in the small bowel 

and these may be either missed or require capsule 

endoscopy, which is not universally available. 

However, the use of capsule endoscopy has increased 

the diagnostic yield in patients with obscure GI 

bleeding to over 60% and as high as 93% in some 

series, depending on patient selection. This is a 

significant improvement over push enteroscopy, but in 

a small number of cases the diagnosis is one of 

exclusion based on the clinical picture of recurrent GI 

blood loss.
39

  

Despite the limited number of studies on the cellular 

and molecular basis of angiodysplasia, a link between 

angiodysplastic lesions and angiogenesis has been 

identified. The expression of the angiogenic growth 

factors VEGF and bFGF was found to be increased in 

samples of angiodysplastic tissue isolated from patients 

presenting with angiodysplasia.
40,41

 Also, increased 

plasma levels of VEGF have been reported in patients 
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with hereditary haemorrhagic telangectasia (HHT), 

who present with multiple angiodysplastic lesions,
42

 

and patients with genetic or acquired VWD
43

 (see 

below).  

 

Von Willebrand Factor as a new Regulator of 

Angiogenesis. Von Willebrand factor (VWF) is a large 

multimeric plasma glycoprotein well known for its 

crucial role in haemostasis, where it mediates platelet 

adhesion to the endothelium and the sub-endothelial 

matrix, and acts as a carrier for coagulation factor VIII 

(FVIII) in plasma. Deficiency or dysfunction of VWF 

causes von Willebrand disease (VWD), the most 

common genetic bleeding disorder in man.  

VWF is produced by EC and megakaryocytes; in 

EC, VWF can be constitutively secreted or stored in 

intracellular organelles called WPB, from where it can 

be secreted in response to various stimuli (rev in
44

). 

Although platelets contain VWF, plasma VWF levels 

have been shown to depend almost entirely on VWF 

from endothelial cells.
45

 The pathways of VWF 

synthesis, storage and secretion have been extensively 

investigated (rev in
46

). VWF drives the formation of 

WPB, which contain numerous proteins (rev in
47

). A 

proteomic approach has recently identified more WPB 

proteins.
48

 The list of known and newly discovered 

WPB molecules, shown in table 1, includes several 

molecules which play a role in angiogenesis.
47-50

 

Because VWF is essential for WPB formation, these 

proteins are dependent on VWF for their storage and 

regulated secretion (see below). 

In recent years, it has become evident that VWF 

plays multiple roles in the vasculature. VWF has been 

shown to control smooth muscle cell proliferation, 

vascular inflammation, cell death and tumour 

metastasis (rev in
51

). The large, complex structure of 

VWF protein supports multiple interactions with cell 

surface receptors and extracellular matrix proteins; in a 

recent review by Lenting et al,
51

 VWF has been 

described as a “molecular bus”, which can interact with 

20 other partners. The list of VWF interacting 

molecules is likely to expand, and with this the

Table 1. Known and potentially novel WPB content (based on Metcalf et al and van Breevoort et al. 47,48).  
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Figure 1. VWF and Angiopoietin-2 (Ang-2) co-localise in Weibel Palade Bodies (WPB) in Human Umbilical Vein Endothelial Cells 

(HUVEC).  WPB are visible as discrete rod-like structures inside the cell. See text for details. 

 

understanding of its multiple complex functions. 

Recently, our group demonstrated a novel function 

for VWF in the control of blood vessel formation.
4
 

Inhibition of VWF expression in EC in vitro was found 

to cause an increase in proliferation, migration and tube 

formation, all assays related to angiogenesis. 

Importantly, these findings were replicated in EC from 

patients with type 1 or type 2 VWD, which were 

isolated through a novel technique that uses circulating 

endothelial progenitors expanded in culture. These 

cells, called blood outgrowth endothelial cells or 

BOEC, have allowed for the first time access to EC 

from the patients, thus opening a new window on the 

cellular mechanisms controlling VWD. In line with 

these findings, both vascular development and adult 

angiogenesis were found to be increased in vivo, in 

VWF deficient mice. The mechanism of action of 

VWF in the control of angiogenesis involves enhanced 

signalling from the growth factor receptor VEGFR2, 

since an inhibitor to VEGFR2 restored in vitro 

migration
4
 and proliferation (Starke, Randi et al, in 

preparation) to normal. More recently, a similar result 

was observed following ablation of VEGFR2 

expression in EC in vitro by silencing RNA (Starke, 

Randi et al, in preparation).  

How does VWF control VEGFR2 signalling? The 

data indicate that this may occur through multiple 

mechanisms (Figure 2 and
4
). VWF was found to 

regulate two pathways, possibly linked, which may be 

controlling angiogenesis: an extracellular pathway 

involving integrin αvβ3 and an intracellular pathway 

involving Ang-2 storage in WPB. Both these pathways 

have been shown to influence VEGF signalling.
28,34

  

Integrin αvβ3 is the main endothelial receptor for 

VWF.
52

 αvβ3 is clearly implicated in angiogenesis, 

although there is some controversy as to its exact role. 

As discussed above, αvβ3 has been shown to both 

promote
53,54

 and repress angiogenesis.
34

 It is likely that 

the role of αvβ3 on the angiogenic process may depend 

on the cellular and extracellular context, interacting 

partners and/or the phase of angiogenesis (rev in
55

). 

Thus VWF may be modulating angiogenesis partly 

through interaction with αvβ3 on the endothelial cell 

surface. Interestingly, αvβ3 levels, function and 

trafficking were decreased in VWF-deficient EC,
4
 

suggesting that VWF may regulate αvβ3 activity in 

multiple ways.  

VWF may also control angiogenesis through an 

intracellular pathway which involves Ang-2. Ang-2 is 

normally stored WPB with VWF (Figure 1 and 
27

). In 

the absence of VWF, no WPB are formed; therefore 

Ang-2 may be constitutively released from the cells 

and presumably acts as a destabilizing, pro-angiogenic 

agent, as described above. Indeed our studies showed 

that in VWF-deficient EC in vitro, release of Ang-2 

was increased.
4
 More recent preliminary data from 

BOEC confirmed these observations, since Ang-2 

release from type 1 and type 3 VWD patients was 

found to be increased compared to control (Starke, 

Randi et al, in preparation). Interestingly, Ang-2 has 

been reported to stimulate the internalisation and 

degradation of αvβ3
37

, which may link the two 

pathways controlled by VWF.  

Besides Ang-2, VWF interacts with or regulates the 

storage of several proteins which have been implicated 

in the control of angiogenesis, including interleukin-

8,
50

 galectin-1
56,57

 and galectin-3,
57,58

 connective tissue 

growth factor
59

 and insulin-like growth factor binding 

protein-7.
48,60

 Future studies will determine the relative 

importance of all these pathways in the control of 

vascular function and angiogenesis by VWF.  

These studies suggest that VWF controls stability 

and quiescence through an intracellular pathway, by 

directing the formation of WPB and hence the storage 

of Ang-2 (and possibly other angiogenic regulators), 

and extracellular pathway, by stabilizing αvβ3 on the  
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Figure 2. VWF controls angiogenesis through intracellular and 

extracellular pathways, involving Ang-2 and integrin v3 

respectively. These pathways converge to regulate angiogenesis 

through VEGF Receptor 2 signalling – see text for details.   

 

cell surface and regulating its levels and activity. In the 

absence of VWF, these pathways are perturbed and 

result in enhanced VEGF signalling and as a 

consequence enhanced proliferation, migration and 

angiogenesis (see model in Figure 2). Interestingly, 

preliminary data from BOEC from patients with type 1 

& 3 vs type 2 VWD suggest that different types may 

control angiogenesis through different mechanisms, 

since Ang-2 storage was normal in type 2 VWD 

patients (Starke, Randi et al, in preparation). 

 

Von Willebrand Disease, Angiogenesis and 

Angiodysplasia: Clinical Implications. Many 

investigators have described an association between 

VWD and angiodysplasia, particularly in the GI tract 

(rev in
1,61-63

); severe GI bleeding, which is often not 

resolved by conventional treatments, remains one of 

the most serious unmet clinical needs in VWD. Our 

data suggest that disturbed angiogenesis is linked to the 

development of angiodysplastic lesions in these 

patients. Angiodysplasia is most often observed in 

VWD patients lacking high molecular weight VWF 

multimers. The survey carried out by Fressinaud and 

Meyer reviewed histories from 4503 patients with 

VWD and found the incidence of angiodysplasia to 

vary with the VWD subtype. Angiodysplasia was most 

frequently associated with loss of VWF high molecular 

weight multimers (HMWM), being found in 2% of 

type 2 and 4.5% of type 3 respectively. In this study, 

no angiodysplasia in type 1 VWD was reported. 

Another study found a particular association with the 

VWD Type 2A mutation S1506L.
64

 Interestingly, 

vascular malformations and GI bleeding are also 

associated with acquired VWD, often in combination 

with aortic stenosis, in a triad that has been named 

Heyde syndrome (rev in
65

), which is also associated 

with loss of VWF HMWM. Heyde syndrome typically 

responds to aortic valve replacement with restoration of 

the normal multimer pattern and cessation of bleeding. 

For many years it was unclear whether this relationship 

was one of enhanced detection due to low levels of 

VWF or whether there was a causal relationship 

between VWF and GI bleeding. The finding that VWF 

can directly control vascular stability and angiogenesis 

provides the first mechanistic link and opens the way to 

possible novel therapeutic approaches to GI bleeding in 

VWD. So far, no evidence for a specific role of 

HMWM has been described in the molecular and 

cellular models in angiogenesis. However the 

molecular studies have identified both extracellular and 

intracellular pathways in the control of angiogenesis; 

thus it is possible that HMWM may affect the 

interaction of VWF with EC. Future studies will be 

required to determine the role of VWF multimers in 

angiogenesis.  

Initial treatment of GI blood loss in patients with 

VWD is logically carried out with VWF replacement 

therapy, which can reduce the incidence and severity of 

recurrent bleeding. However, the von Willebrand 

Disease Prophylaxis Network (VWD PN) study 

showed that prophylaxis was less successful at 

reducing GI blood loss than it was in reducing joint 

bleeding or menorrhagia.
66

 Moreover, it is well 

recognised that a subgroup of patients continue to have 

significant blood loss despite otherwise adequate 

replacement therapy. The failure of VWF replacement 

coupled with increased understanding of angiogenesis 

has prompted exploration of alternative therapies for 

this problem. Some success has been reported with 

thalidomide in angiodysplasia with or without VWD 

but this agent has a high incidence of side effects.
67,68

 

Most recently striking successes have been reported 

using atorvastatin which has been utilised for its anti-

angiogenic effect, but further trials will be required to 

determine whether this is reproducible.
69,70

 Moreover, 

the characterisation of the molecular pathways through 

which VWF regulates angiogenesis will provide novel 

therapeutic targets for the treatment of angiodysplastic 

GI bleeding.  

 

Conclusions. The finding that VWF regulates 

angiogenesis clearly has a number of important 
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implications. Firstly, it provides a novel link between 

VWD and angiodysplasia, which is likely to have 

therapeutic implications for the future. Secondly, it 

points the way to investigating the role of VWF in 

normal development and healing but also in 

pathological processes such as tumour growth, all of 

which depend on angiogenesis. We anticipate that 

these investigations will lead to novel agents to 

modulate angiogenesis for therapeutic benefit. A 

critical question for both of these problems will be 

determining the relative roles of intra- and extra-

cellular VWF in regulation of angiogenesis. We 

therefore remain some way from translation of these 

exciting findings into clinical practice. Experience to 

date suggests that replacement therapy does not always 

correct the defect in angiodysplasia and it is unlikely 

that simple infusion of VWF will be a panacea for 

abnormal vasculature.  
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