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Abstract. The 5q- syndrome is the most distinct of the myelodysplastic syndromes (MDS) and 

patients with this disorder have a deletion of chromosome 5q [del(5q)] as the sole karyotypic 

abnormality. Several genes mapping to the commonly deleted region of the 5q- syndrome have 

been implicated in disease pathogenesis in recent years. Haploinsufficiency of the ribosomal gene 

RPS14 has been shown to cause the erythroid defect in the 5q- syndrome. Loss of the microRNA 

genes miR-145 and miR-146a has been associated with the thrombocytosis observed in 5q- 

syndrome patients. Haploinsufficiency of CSNK1A1 leads to hematopoietic stem cell expansion in 

mice and may play a role in the initial clonal expansion in patients with 5q- syndrome. 

Moreover, a subset of patients harbor mutation of the remaining CSNK1A1 allele. Mouse models 

of the 5q- syndrome, which recapitulate the key features of the human disease, indicate that a 

p53-dependent mechanism underlies the pathophysiology of this disorder. Importantly, 

activation of p53 has been demonstrated in the human 5q- syndrome. Recurrent TP53 mutations 

have been associated with an increased risk of disease evolution and with decreased response to 

the drug lenalidomide in del(5q) MDS patients. Potential new therapeutic agents for del(5q) 

MDS include the translation enhancer L-leucine. 
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The 5q- syndrome: candidate genes and 

pathophysiology. The myelodysplastic syndromes 

(MDS) are heterogeneous clonal hematopoietic stem 

cell (HSC) malignancies characterized by ineffective 

hematopoiesis, peripheral blood cytopenias, and 

typically patients have a hypercellular bone marrow. 

MDS patients frequently show disease progression 

(approximately 40% of cases) to acute myeloid 

leukemia (AML).
1
 

Chromosomal monosomies and deletions are 

commonly observed in MDS. Cytogenetic 

abnormalities are present in approximately 50% of de 

novo MDS and 80% of therapy-related MDS cases.
2
 

Interstitial deletion within the long arm of chromosome 

5 [del(5q)] is one of the most common karyotypic 

abnormalities reported in de novo MDS, occurring in 

approximately 10-20% of patients with this disorder.
2
 

Patients are defined as 5q- syndrome when they 

have a del(5q) as the sole karyotypic abnormality and a 

medullary blast count of less than 5%.
3,4

 The 5q- 

syndrome was first described by Van den Berghe et al 

in 1974
5
 and is the most distinct of the MDS with a 

clear genotype-phenotype relationship. Patients with 

the 5q- syndrome show macrocytic anemia, 

hypolobulated megakaryocytes, a normal or high 

platelet count and a good prognosis with approximately 

10% of patients transforming to AML.
6,7
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The del(5q) is considered to mark the location of 

one or more genes the loss of which may affect 

important processes involved in normal 

hematopoiesis.
8
 The commonly deleted region (CDR) 

of the 5q- syndrome was identified over 20 years ago 

using molecular mapping and fluorescent in situ 

hybridization techniques by Boultwood et al
9
 and was 

progressively narrowed to a ~1.5Mb interval at 5q32-

q33 flanked by the DNA marker DS5413 and the 

GLRA1 gene.
10,11

 Genomic annotation of the CDR of 

the 5q- syndrome highlighted several promising 

candidate genes mapping to the CDR, including the 

tumor suppressor gene SPARC, the ribosomal protein 

gene RPS14 and several microRNA genes.
10,12

 

Mutation screening of all 40 genes within the CDR was 

performed in ten 5q- syndrome patients using Sanger 

sequencing several years ago and no mutations were 

identified.
12

 The absence of mutations in genes in the 

CDR was suggestive of haploinsufficiency (a dosage 

effect resulting from the loss of one allele of a gene)
13

 

being an important mechanism in the 5q- syndrome. 

In a study published in 2007, the transcriptome of 

bone marrow CD34
+
 cells was investigated in a cohort 

of ten patients with the 5q- syndrome using 

microarray-based gene expression profiling.
12

 Several 

candidate genes mapping to the CDR of the 5q- 

syndrome showed haploinsufficiency in 5q- syndrome 

patients, including RPS14, encoding a component of 

the 40S ribosomal subunit, and CSNK1A1, encoding a 

serine/threonine kinase.
12

 Crucially, these two genes 

would be shown in subsequent studies
14,15

 to have an 

important role in the molecular pathogenesis of the 5q- 

syndrome. 

In a landmark study by Ebert et al in 2008, RPS14 

was identified as a 5q- syndrome gene using a RNA-

mediated interference (RNAi)-based screen of each 

gene within the CDR.
14

 Knockdown of RPS14 to 

haploinsufficient levels in normal HSC resulted in a 

block in erythroid differentiation with relative 

preservation of megakaryocytic differentiation. Forced 

expression of RPS14 in primary bone marrow cells 

from 5q- syndrome patients rescued the phenotype, 

demonstrating the important role of RPS14 in the 5q- 

syndrome.
14

 In addition, RPS14 haploinsufficiency 

resulted in a block in the processing of pre-ribosomal 

RNA and in abrogation of 40S ribosomal subunit 

formation.
14

 Studies by Pellagatti et al have shown that  

CD34
+
 cells from patients with the 5q- syndrome  have 

defective expression of many ribosomal- and 

translation-related genes.
16,17

 The results of these 

studies suggest that the 5q- syndrome is a disorder of 

aberrant ribosome biogenesis, and the 5q- syndrome is 

now considered to be a ribosomopathy.
18

 There is a 

strong analogy between the 5q- syndrome and 

Diamond-Blackfan anemia (DBA),
12

 a disorder which 

is similarly caused by haploinsufficiency of ribosomal 

protein genes, including RPS19.
19

  

A mouse model of the 5q- syndrome has been 

generated by Barlow et al using large-scale 

chromosomal engineering.
20

 Mice with 

haploinsufficiency of the Cd74-Nid67 interval (which 

is syntenic to the CDR of the human 5q- syndrome and 

includes Rps14) recapitulated the key features of the 

human disease, including a macrocytic anemia and 

monolobulated megakaryocytes in the bone marrow.
20

 

This ‘5q- mouse’ showed defective bone marrow 

progenitor development and an accumulation of p53 

protein with increased apoptosis was observed in the 

bone marrow cells, similar to that observed in animal 

models of DBA.
21

 The progenitor cell defect could be 

rescued by intercrossing the ‘5q- mouse’ with p53-

deficient mice, providing the first evidence that a p53-

dependent mechanism underlies the pathophysiology of 

the 5q- syndrome.
20

  

Recently, a murine model for conditional, 

heterozygous inactivation of Rps14 in the bone marrow 

has been generated.
22

 Rps14 haploinsufficient mice 

showed significantly reduced hemoglobin and red 

blood cell counts with a significantly higher MCV. 

Bone marrow analysis confirmed an erythroid 

differentiation defect, with a significant increase in 

hypolobulated megakaryocytes. Rps14 

haploinsufficient mice also showed reduced protein 

synthesis and p53 induction in late-stage erythroblasts. 

Genetic inactivation of p53 rescued the erythroid 

phenotype: the erythroid differentiation defect was 

restored in Rps14
-/+

p53
-/+

 mice.
22

 This murine model 

shows that haploinsufficiency of Rps14 is sufficient to 

recapitulate the erythroid and megakaryocytic 

phenotype observed in the 5q- syndrome. 

Importantly, induction of p53 and up-regulation of 

the p53 pathway has been shown to occur in the human 

5q- syndrome.
23

 Immunohistochemical analysis 

showed moderate to strong p53 expression in erythroid 

cells in bone marrow trephine sections from patients 

with the 5q- syndrome, and gene expression profiling 

demonstrated that the p53 pathway is significantly 

deregulated in the CD34
+
 cell population of these 

patients.
23

 The accumulation of p53 protein in bone 

marrow erythroid precursors of patients with the 5q- 

syndrome has been confirmed in other studies.
24,25

 

Activation of p53 has been shown to occur 

selectively in erythroid cells differentiated from human 

HSC with shRNA-based knockdown of RPS14.
24

 

Induction of p53 resulted in erythroid-specific 

accumulation of p21, cell cycle arrest and apoptosis, 

consistent with the failure of erythropoiesis observed in 

the 5q- syndrome.
24

 Inhibition of p53 using pifithrin-α 

in culture rescued the erythroid defect, suggesting that 

p53 activation may represent a therapeutic target in 

MDS with del(5q).
24

  

Thus several converging lines of evidence
20,21,23,24

 

demonstrate that ribosomal stress leads to activation of 

the p53 pathway, a key effector of erythroid hypoplasia 

in both del(5q) MDS and congenital ribosomopathies. 
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CSNK1A1. A recent study by Schneider et al has 

shown that CSNK1A1 plays a central role in the 

pathogenesis of del(5q) MDS.
15

 CSNK1A1 encodes 

CK1α, a central regulator of β-catenin
26

 which is a 

major driver of stem cell self-renewal.
15

 Heterozygous 

inactivation of Csnk1a1 in mice led to β-catenin 

activation and expansion of HSCs,
15

 suggesting that 

CSNK1A1 haploinsufficiency may be the mechanism 

underlying the initial clonal expansion in patients with 

the 5q- syndrome. Mutations of CSNK1A1 were 

identified in approximately 7% of MDS del(5q) cases 

analyzed.
15

 A CSNK1A1 mutation was reported in a 

del(5q) MDS patient in a previous study.
27

 

Interestingly, Schneider et al showed that expression of 

mutant CSNK1A1 resulted in β-catenin activation and 

HSC cell cycle progression. Thus CSNK1A1 mutations 

are recurrent in a small proportion of del(5q) MDS 

patients, and there is evidence that these mutations may 

drive clonal dominance. Furthermore, Csnk1a1 

haploinsufficiency was shown to sensitize cells to 

casein kinase inhibition, indicating that CSNK1A1 is a 

potential new therapeutic target for the treatment of 

del(5q) MDS.
15

 

 

MicroRNA genes. It has been suggested that 

haploinsufficiency of miR-145 and miR-146a, two 

miRNA genes that map within and adjacent to the CDR 

respectively,
12

 may be the cause of other key features 

of the 5q- syndrome, namely hypolobulated 

megakaryocytes and thrombocytosis. The study by 

Starczynowski et al showed down-regulation of miR-

145 and miR-146a in the CD34
+
 cells of patients with 

the 5q- syndrome.
28

 Knockdown of these miRNAs in 

mouse HSCs resulted in thrombocytosis, mild 

neutropenia and megakaryocytic dysplasia.
28

 Kumar et 

al have identified the FLI1 gene, encoding a 

transcription factor involved in megakaryopoiesis, as a 

critical target of miR-145 and have shown that patients 

with del(5q) MDS have increased expression of FLI1.
29

 

Inhibition of miR-145 or overexpression of Fli-1 

resulted in an increase in the production of 

megakaryocytic cells relative to erythroid cells.
29

 These 

data suggest that deficiency of miR-145 and miR-146a 

may underlie the thrombocytosis observed in some 5q- 

syndrome patients.  

 

Cell of Origin. The 5q- syndrome is a disorder 

originating in the human HSC. Using 

immunophenotyping and FISH, Jaju et al showed B-

cell involvement in one of three cases with the 5q- 

syndrome.
30

 In the study of Nilsson et al, no T-cell 

involvement was observed in nine patients with 

del(5q), but one patient had B-cell involvement.
31

 A 

minimum of 94% of cells in the minor CD34
+
CD38

-
 

HSC compartment carried a del(5q) in all patients 

analyzed and 5q aberrations were found in 25-90% of 

purified CD34
+
CD19

+
 pro-B cells in three of five 

patients.
31

 These data strongly suggest that 5q deletions 

occur in HSCs with a combined lympho-myeloid 

potential and that 5q deletions represent an early event 

in MDS pathogenesis.
31

 A subsequent gene expression 

profiling study of highly purified 5q-deleted 

CD34
+
CD38

−
Thy1

+
 cells in 5q- MDS identified a 

molecular signature supporting a HSC origin for this 

disorder.
32

 

In a recent study, Woll et al elegantly demonstrated 

that the MDS are propagated by rare and distinct 

human cancer stem cells in vivo.
27

 A total of 34 

somatic lesions, including del(5q) and driver 

mutations, were identified in bulk bone marrow cells of 

15 patient with lower-risk MDS and all these lesions 

could be tracked back to the stem cell compartment. In 

MDS cases with del(5q) and additional driver 

mutations, acquisition of del(5q) preceded recurrent 

gene mutations, with the exception of four MDS cases 

with sideroblastic anemia in which the del(5q) was 

preceded by SF3B1 gene mutations. In all cases with 

isolated del(5q) or RAEB1/RCMD, the del(5q) was 

predicted to be the first (or only) genetic lesion. These 

data are compatible with the del(5q) being the initiating 

and potentially the only genetic lesion required for the 

development of MDS with isolated del(5q). 

 

Treatment. The immunomodulatory drug 

lenalidomide has been shown to have dramatic 

therapeutic efficacy in patients with the 5q- syndrome 

and other MDS patients with del(5q).
33,34

 A large 

multicentre phase II trial by List et al evaluated 

lenalidomide treatment response in 148 MDS patients 

with del(5q): transfusion independency and a complete 

cytogenetic remission was achieved in 67% and 45% 

of patients respectively.
33

 Lenalidomide is now 

considered the standard of care for the treatment of 

transfusion dependent anemia in lower risk del(5q) 

MDS patients.
35

 

Lenalidomide has been shown to inhibit the growth 

of MDS del(5q) erythroblasts but did not affect normal 

cells in culture.
36

 The mode of action of lenalidomide 

has been investigated in several studies. Lenalidomide 

has been shown to upregulate several genes, including 

the tumor suppressor gene SPARC and the TGF-β 

family member activin A, in hematopoietic progenitor 

cells from patients with del(5q) MDS and normal 

individuals.
36,37

 SPARC, located at 5q32-q33 within the 

CDR of the 5q- syndrome, has anti-proliferative, anti-

adhesive, and anti-angiogenic properties, all known 

effects of immunomodulatory drugs.
38

 Wei et al
39

 

demonstrated that lenalidomide inhibits two 

phosphatases, Cdc25C and PP2Acα. The genes for 

these phosphatases are located on 5q and are deleted in 

most patients with del(5q) MDS. Cdc25C and PP2Acα 

are co-regulators of the G2-M checkpoint in the cell 

cycle and thus their inhibition by lenalidomide leads to 

G2 arrest and apoptosis. These data suggest that 

haploinsufficiency of Cdc25C and PP2Acα in del(5q) 

MDS causes an enhanced sensitivity to lenalidomide.
39
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Lenalidomide has been shown to promote 

degradation of p53 by inhibiting auto-ubiquitination of 

MDM2 in del(5q) MDS.
25

 It has been suggested that 

lenalidomide restores MDM2 functionality in the 5q- 

syndrome to overcome p53 activation in response to 

ribosomal stress.
25

 A recent study reported that 

lenalidomide induces the ubiquitination and consequent 

degradation of CSNK1A1 by the CRBN-CRL4 E3 

ubiquitin ligase.
40

 Knockdown of CSNK1A1 sensitized 

primary CD34
+
 cells to lenalidomide, suggesting that 

haploinsufficiency of CSNK1A1 might increase 

lenalidomide sensitivity in del(5q) hematopoietic 

cells.
40

 

These data implicate several genes mapping to 

del(5q) in the mode of action of lenalidomide in 

del(5q) MDS. 

It would be valuable to identify predictive factors 

for response to lenalidomide, and an erythroid 

differentiation signature that predicts response to 

lenalidomide in MDS has been identified.
41

 A 

correlation of clinical response and response duration 

with induction of the microRNA miR-145 by 

lenalidomide in CD34
+
 cells from patients with MDS 

and the del(5q) has been recently proposed.
37

 

Importantly, the presence of TP53 mutation has been 

shown to influence negatively the response to 

lenalidomide in del(5q) MDS in several studies. In the 

study by Jädersten et al the probability of a complete 

cytogenetic response to lenalidomide was significantly 

lower in TP53 mutated patients.
42

 Another study 

confirmed the importance of TP53 mutational status for 

response to lenalidomide treatment: wild-type TP53 

status showed a tendency for hematological response, 

while none of the cases with mutated TP53 achieved a 

complete cytogenetic response.
43

 In a recent study by 

Saft et al, immunohistochemical analysis of p53 was 

performed in bone marrow biopsies from 85 lower-risk 

del(5q) MDS patients treated with lenalidomide.
44

 

Strong p53 expression in ≥1% of bone marrow 

progenitor cells was observed in 35% of patients and 

was significantly associated with shorter survival, 

higher risk of evolution to AML and a lower 

cytogenetic response rate to lenalidomide. 

Lenalidomide is clearly an effective treatment for 

lower-risk, transfusion-dependent MDS patients with 

del(5q), however not all patients respond to 

lenalidomide and approximately half of MDS patients 

with del(5q) acquire resistance to the drug within two 

to three years.
33

 There is thus a clinical need for novel 

treatments for MDS patients with del(5q). Potential 

new therapeutic agents for this group of patients 

include the translation enhancer L-leucine
45,46

 and the 

p53 inhibitor cenersen
47

 (Figure 1).  

 

L-leucine. The HSCs of patients with the 5q- syndrome 

show defective ribosome biogenesis
14

 and deregulation 

of many ribosomal- and translation-related genes.
17

 

Defective ribosome biogenesis may result in a 

reduction in the efficiency of mRNA translation and 

total protein production has been shown to be 

significantly decreased in erythroid cells with 

knockdown of RPS14.
46

 This defect in mRNA 

translation represents a potential therapeutic target and 

there is evidence suggesting that the translation 

enhancer L-leucine may have some efficacy in 

ribosomopathies. Pospisilova et al described a DBA 

 

 
Figure 1. Mechanisms underlying the erythroid defect in the 5q- syndrome and potential new therapeutic targets. 
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patient who showed a marked improvement in anemia 

and became transfusion-independent after treatment 

with L-leucine.
48

 Yip et al reported that L-leucine 

treatment of cultured erythroblasts derived from CD34
+ 

cells of healthy controls with RPS14 knockdown and 

from CD34
+
 cells of del(5q) patients resulted in an 

increase in proliferation, erythroid differentiation and 

mRNA translation.
46

 Zebrafish models of del(5q) MDS 

and DBA treated with L-leucine showed increased 

hemoglobinization and red cell numbers and reduced 

developmental defects.
45

 Similarly, L-leucine treatment 

of a mouse model of DBA resulted in improved 

hemoglobin concentration and in an increase in the 

number of erythrocytes.
49

 There is evidence suggesting 

that the enhanced erythroid progenitor cell growth and 

differentiation observed in animal and cellular models 

of the 5q- syndrome and DBA treated with L-leucine 

occurs through activation of the mTOR pathway.
45,50

 

These data support the rationale for clinical trials of L-

leucine as a therapeutic agent for the 5q- syndrome and 

DBA. 

A recent report described three MDS patients with 

isolated del(5q) who were treated with L-leucine for up 

to three months. No adverse effects were observed 

during L-leucine treatment, however none of the 

patients showed an improvement in the cytopenia or 

transfusion requirements.
51

 Leucine absorption tests 

may be useful in determining the optimal dose
48

 and in 

vitro measurement of basal and post-L-leucine 

translation levels could help identifying patients that 

are more likely to respond to L-leucine therapy.
48

 It 

will be important to determine the efficacy of L-leucine 

treatment in larger patient cohorts within the context of 

clinical trials. Indeed, clinical trials evaluating the 

therapeutic use of L-leucine in DBA are underway in 

the US and in Russia (NCT02386267 and 

NCT01362595, www.clinicaltrials.gov). 

 

Cenersen. Recently, cenersen, a clinically active 20-

mer antisense oligonucleotide complementary to exon 

10 of TP53, has been shown to suppress p53 

expression and restore erythropoiesis in del(5q) MDS 

patient cells in culture.
47

 Cenersen treatment of RPS14-

deficient erythroblasts significantly reduced cellular 

p53 and PUMA expression, decreased apoptosis and 

increased cell proliferation. Cenersen significantly 

suppressed nuclear p53 in CD34
+
 cells isolated from 

del(5q) MDS patients. Erythroid burst recovery 

increased in proportion to the magnitude of p53 

suppression without del(5q) clonal suppression. 

Dexamethasone, a p53 antagonist, was added to 

lenalidomide treatment in eight lower-risk, transfusion-

dependent, del(5q) MDS patients with acquired drug 

resistance. Transfusion independence was restored in 

five patients, with expansion of erythroid precursors 

and decreased p53 expression. This study shows that 

targeted suppression of p53 restores effective 

erythropoiesis in lenalidomide-resistant del(5q) MDS.
47

 

A clinical trial testing the benefits of cenersen in lower-

risk MDS patients is in progress (NCT02243124, 

www.clinicaltrials.gov). Data from AML and CLL 

clinical trials have shown increased cytotoxicity and 

enhanced sensitivity to conventional chemotherapy 

when given in combination with cenersen, with no 

safety issues associated with the use of cenersen.
52,53

 

Transient pharmacological inhibition of p53 has been 

shown not to increase the incidence of cancer in a 

murine carcinogenicity model.
54

 Suppression of p53 

could possibly be a therapeutic option in humans if the 

tumor suppressor function of p53 is
 
only transiently 

abrogated and no long-term adverse effects are 

observed. 

 

Disease Progression. Approximately 10% of patients 

with 5q- syndrome progress to AML and the 

underlying genetic events driving disease evolution are 

poorly understood.
6
 Some studies have shed light on 

the molecular basis of leukemic transformation in 

del(5q) MDS.  

There is evidence to suggest that mutation of TP53, 

resulting in the inactivation of the p53 protein, may be 

one of the molecular events involved in the clonal 

progression of the 5q- syndrome to AML.
42,55-57

 Using 

deep-sequencing technology, Jädersten et al have 

demonstrated that small hematopoietic cell subclones 

with TP53 mutation could be detected at an early 

disease stage in 18% of patients with MDS with 

del(5q). The TP53 mutations were present years before 

disease progression and were associated with an 

increased risk of evolution to AML.
42

 These findings 

indicate the existing heterogeneity even within an MDS 

subtype harboring a single cytogenetic abnormality.  

Fernandez-Mercado et al have used a next-

generation sequencing-based panel, targeting 25 genes 

mutated in various myeloid malignancies, to study a 

cohort of 43 early and advanced MDS cases with 

del(5q).
55

 Overall, 45% of early and 67% of advanced 

MDS cases presented at least one mutation. TP53 and 

ASXL1 were the genes with the highest mutation 

frequency (25% of patients for each gene) among 

advanced cases, and showed a lower mutation 

frequency in cases of 5q- syndrome (4.5% and 13.6%, 

respectively), suggesting a role in disease progression 

in del(5q) MDS. 

A recent study using whole exome sequencing on 

paired samples from two MDS cases with del(5q) and 

one MDS case without del(5q) before and after 

progression to AML, showed that most mutations 

identified in the two del(5q) cases were present at the 

AML stage only.
58

 In contrast, most mutations 

identified in the case without del(5q) were present at 

both the MDS and the AML stage. This study 

identified recurrent mutations of TP53 and RYR1 at the 

AML stage of the two del(5q) patients analyzed.
58

 The 

RYR1 gene encodes a calcium release channel and may 

represent a new recurrently mutated gene associated 
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with MDS del(5q) transformation to AML. 

Interestingly, 67% of infant leukemia patients with 

AML were shown to be compound heterozygotes for 

RYR1 and FLG.
59

 

It is well recognized that mutated p53 can lead to 

genetic instability and disease progression in cancer 

and leukemia. Mounting evidence suggests that p53 

plays an important role in the development and 

progression of the 5q- syndrome, with activation of 

wild-type p53 resulting in increased apoptosis and 

defective erythropoiesis in the early stages of the 

disease, followed by an expansion of a small subclone 

harboring mutant (inactivated) p53 in some patients as 

the disease progresses, leading to leukemic 

transformation. It may be speculated that if increased 

p53 activity inhibits the growth of primitive del(5q) 

malignant cells, then there could be a selective pressure 

for these cells to mutate or lose the TP53 gene. In 

support of this suggestion, the del(5q) and TP53 

mutations do appear to strongly associate, indicating a 

likely synergy between these abnormalities. 

It has been shown that, while NPM1 deletion is an 

uncommon event in patients with the 5q- syndrome, it 

occurs in 40% of cases with high-risk MDS/AML with 

complex karyotypes and 5q deletion and is therefore 

associated with more advanced forms of del(5q) 

MDS.
60

 

 

Conclusions. Several cooperating events seem to be 

necessary in the development of the 5q- syndrome. The 

studies described above show that p53 activation 

secondary to RPS14 haploinsufficiency underlies the 

anemia observed in patients with the 5q- syndrome. 

Loss of the miRNA genes miR-145 and miR146a 

seems to play a role in the development of the 

megakaryocytic abnormalities observed in this 

disorder. The molecular abnormality that confers a 

clonal growth advantage in the 5q- syndrome has 

remained elusive for a long time, but it has now been 

shown that haploinsufficiency of CSNK1A1 may be 

the cause of the initial clonal expansion in 5q- 

syndrome patients. Thus molecular abnormalities 

associated with the major features of the 5q- syndrome 

have now been identified in a number of genes that 

map to the CDR. 

Mutations of TP53 have been associated with 

disease progression in del(5q) MDS. Other gene 

mutations have been described in a small number of 

del(5q) patients that evolved to AML and their 

potential role in disease transformation will need to be 

confirmed in larger patient cohorts. It is possible that 

there are other events still unidentified that may be 

important in disease pathogenesis. Whole genome 

sequencing studies may identify new changes in 

intronic or regulatory regions of genes mapping within 

the CDR of the 5q- syndrome or elsewhere in the 

genome that are associated with the development 

and/or progression of this disorder. Haploinsufficiency 

of other genes may also be involved in disease 

pathogenesis. 

Great progress has been made over the past decade 

in the elucidation of the molecular basis of the 5q- 

syndrome (Figure 2), and new insights into disease 

mechanisms are leading to the development of novel 

treatments for the 5q- syndrome. 
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Figure 2. Timeline and milestones in the study of the 5q- syndrome. 
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