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Abstract. While hydroxycarbamide (hydroxyurea, HU) has less and fewer indications in 

malignant hemopathies, it represents the only widely used drug which modifies sickle cell disease 

pathogenesis. Clinical experience with HU for patients with sickle cell disease has been 

accumulated over the past 25 years in Western countries. The review of the literature provides 

increasing support for safety and efficacy in both children and adults for reducing acute vaso-

occlusive events including pain episodes and acute chest syndrome. No increased incidence of 

leukemia and teratogenicity was demonstrated. HU has become the standard-of-care for sickle 

cell anemia but remains underused. Barriers to its use should be identified and overcome. 

 
Keywords: Hydroxyurea; Treatment; Sickle Cell Anemia; Clinical Management; Hemoglobinopathies; Prognosis. 

 
Citation: Cannas G, Poutrel S and Thomas X.  Hydroxycarbamine: from an old drug used in malignant hemopathies to a current standard in 

sickle cell disease. Mediterr J Hematol Infect Dis 2017, 9(1): e2017015, DOI: http://dx.doi.org/10.4084/MJHID.2017.015  
 

Published: February 15, 2017 Received: December 12, 2016 Accepted: January 20, 2017 
 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.  

 
Correspondence to: Xavier Thomas, M.D., Ph.D., Hospices Civils de Lyon, Hematology  Department, Lyon-Sud Hospital, Bât. 

1G, 165 chemin du Grand Revoyet, 69495 Pierre Bénite, France. Tel: +33 478862235. Fax: +33 4 72678880. E-mail: 

xavier.thomas@chu-lyon.fr  

 

Introduction. Hydroxycarbamide (Hydroxyurea, 

HU) was first synthesized in Germany in 1869,
1
 

but its potential biologic significance was not 

recognized until 1928.
2
 It is a simple compound of 

the formula, H2NCONHOH, which the 

=C−NHOH moiety is responsible for its biological 

activity (Figure 1). HU is a potent inhibitor of 

DNA synthesis. It is antimitotic and cytotoxic 

depending upon the used concentration, the 

duration of exposure, and the sensitivity of the 

organism. HU is active mainly in the S-phase of 

the cell cycle. In the 1950s the drug was evaluated 

in a large number of experimental tumor models 

and was found to have broad anti-tumor activity 

against  both leukemia and solid tumors.
3
  Clinical  

trials began in the 1960s.
4
 As an antineoplastic 

drug, HU has some advantages. It may be used 

with ambulatory patients and has relatively few 

side effects, which are relieved almost 

immediately after withdrawal of the drug. The 

drug is readily absorbed from the gastrointestinal 

tract following oral administration. Peak serum 

concentrations are reached in 1 to 2 hours, and the 

serum half-life is about 5.5 hours. It is rapidly 

excreted in the urine, and it is reported that up to 

70% of the dose is excreted unchanged.
5
 At 

present, HU has only a limited medical use in 

acute leukemia, consisting in reducing and 

controlling white blood cell count in patients with 

hyperleukocytosis.  The principal  use  of  HU  has 
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Figure 1. Structure of hydroxycarbamine (hydroxyurea, HU). 

 

been as a myelosuppressive agent in the 

myeloproliferative syndromes. The efficacy of HU 

as initial therapy for chronic myeloid leukemia 

(CML) has been known for a number of years.
6
 

Since the introduction of tyrosine kinase inhibitors 

in the treatment of CML, hydroxyurea is 

essentially used in the BCR-ABL1-negative 

myeloproliferative neoplasms, including 

polycythemia vera, essential thrombocythemia, 

and primary myelofibrosis.
7
 In high-risk patients 

with polycythemia vera or essential 

thrombocythemia, HU remains the first-line 

cytoreductive drug of choice, the second-line 

choice being represented by interferon-alpha and 

busulfan.
8,9

 Survival is relatively long in these 

diseases, and risk of leukemic transformation low. 

Treatment with HU has not been shown to modify 

these favorable outcomes, while controlled clinical 

trials have shown increased risk of acute leukemia 

with the use of chlorambucil, radiophosphorus and 

pipobroman, and increased risk of fibrotic 

transformation with the use of anagrelide.
7
 The 

introduction of new drugs should, therefore, be 

careful. This is particularly important when 

considering the use of JAK inhibitor ruxolitinib, 

which was recently approved for use in these 

pathologies. HU also remains the first-line drug of 

choice for myelofibrosis-associated splenomegaly, 

while hydroxyurea-refractory splenomegaly is 

often managed with ruxolitinib therapy or 

splenectomy.
10

 In addition to its use as an anti-

cancer agent, HU has found some marginal 

applications in dermatology.
11

 

While HU is an old drug that can still be used 

to control essential thrombocythemia and 

polycythemia vera in patients with high-risk 

disease, it has emerged over the last decades as the 

primary disease-modifying therapy for sickle cell 

anemia, a non-malignant inherited disease. The 

purpose of this short review is to provide the 

reader a comprehensive understanding of HU and 

to reinforce the fact that HU is a safe and effective 

medication for the treatment of sickle cell disease. 

 

Sickle Cell Disease: Historical Considerations. 

Sickle cell anemia, first described by James B 

Herrick in 1910,
12

 is the first inherited disease 

identified at the molecular level. In 1949, Linus 

Pauling confirmed an intrinsic dissimilarity in the 

hemoglobin from patients with sickle cell anemia 

on electrophoretic mobility patterns.
13

 Because of 

the heterozygote state, sickle cell trait, appeared to 

persist in some populations with prevalence as 

high as 20%-40% and the sickle cell trait allele 

frequency overlapped with malarial endemicity, 

AC Allison hypothesized that sickle hemoglobin 

(HbS) must confer a selective advantage of 

malarial resistance in the carrier state.
14

 A recent 

meta-analysis confirmed a strong protective 

advantage of sickle cell trait for Plasmodium 

falciparum malaria, suggesting that HbS does not 

protect against infection itself, but rather to 

progression to clinical malaria and its childhood 

associated-mortality.
15

 Although not elucidated, 

the suggested mechanisms involved in this 

epidemiologic observation comprise a protective 

effect through enhanced immunity, increased 

clearance of infected erythrocytes, and reduced 

parasite growth.  In 1956, VM Ingram discovered 

a single amino acid substitution in HbS.
16

 The 

genetic basis for the abnormal hemoglobin was a 

single base-pair change (A → T) in the β-globin 

gene, resulting in a substitution of a valine for 

glutamic acid at position 6. Structural changes 

promote polymerization into long fibrils, distorting 

the red cell into a sickle shape, leading to 

erythrocytes dehydrated, rigid and prone to 

hemolysis, and so to occluding the 

microvasculature causing acute and chronic tissue 

ischemia and injury. It took then until the 1970s 

for systematic research into the laboratory 

screening techniques and clinical sequelae of 

sickling disorders to be prioritized.
17

 At that time, 

only 50% of afflicted children survived into 

adulthood.
18

 As a result of the institution of the 

National Sickle Cell Anemia Control Act, a 

Hemoglobinopathy Reference Laboratory was 

created to standardize techniques and elaborate 

screening programs.
19

 By the 1990s, widespread 

mandatory newborn screening and the routine 

administration of penicillin to prevent 

pneumococcal sepsis increased childhood survival 

to over 90%.
20

 Currently, the most common 
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screening techniques include sickle solubility 

testing, hemoglobin electrophoresis, high-

performance liquid chromatography, and 

isoelectric focusing, each with their own 

advantages and limitations. Recent advances in 

technology have also allowed for detection of 

sickle cell trait from DNA through exome 

sequencing.
21,22

 Indeed misclassification of 

individuals with sickle cell trait and sickle cell 

disease in early case reports led to confusing series 

in which sickle cell disease complications were 

ascribed to individuals with sickle cell trait. 

No specific therapy was available until the 

1970s when it was recognized that patients with 

increased red blood cell HbF had fewer adverse 

clinical events. First described as a potential 

therapy for sickle-cell anemia in 1984, HU 

enhances the production of fetal hemoglobin 

production in sickle erythrocytes.
23

 The two most 

common acute morbidities in sickle cell anemia 

are vaso-occlusive pain crises and acute chest 

syndrome, corresponding to the occlusion of small 

vessels in the bone marrow and lungs, 

respectively.
24,25

 Other pulmonary complications 

of sickle cell disease include pulmonary 

hypertension, pulmonary artery thrombosis, and 

pulmonary fibrosis, with an increased prevalence 

of reactive airways disease, increased tricuspid 

regurgitant jet velocity, sleep-disordered 

breathing, and nocturnal hypoxemia.
26

 On a 

chronic basis, vaso-occlusion may damage the 

lungs, kidney or brain accounting ultimately for 

most deaths in patients with sickle cell disease.
27

 

Clinical studies with HU demonstrated a decreased 

rate of vaso-occlusive disease and acute chest 

syndrome, and an improved survival.
28

 

Consequently, HU became in 1998 the only US 

Food and Drug Administration-approved therapy 

for sickle cell disease. The European Medicines 

Agency authorized HU in 2007 for pediatric and 

adult patients with sickle cell anemia. In 2008, the 

Agency for Healthcare Research and Quality 

published a comprehensive review,
29

 and a 

consensus conference on HU in the treatment of 

sickle cell disease was organized by the National 

Institute of Health.
30

 

 

HU Mechanisms of Action in Sickle Cell 

Anemia. In sickle cell anemia, the red cells almost 

contain only HbS. Only a smaller population of 

red cells comes directly from immature 

progenitors, which contain the fetal hemoglobin 

(HbF). These nearly normal cells mitigate the 

damage caused by HbS.
31

 Cells with high levels of 

HbS lose deformability when deoxygenated, 

leading to vascular obstruction and ischemia. 

Membrane damage shortens the life span of the 

cell leading to chronic intravascular and 

extravascular hemolysis. Damage red cells showed 

an increased adherence to vascular endothelium 

leading to vaso-occlusion and proliferative lesions 

involving many cells and factors underlying large-

vessel stroke.
32

 Shifting hemoglobin production 

from HbS to HbF represents then a major 

therapeutic approach to sickle cell anemia.  Low 

level of HbF is one of the strongest predictors of 

morbidity and mortality in sickle cell disease.
27

 

The cytotoxic effect of HU reduces the production 

of red cells containing a high level of HbS, which 

tend to arise from rapidly dividing precursors, and 

favors the production of cells containing a high 

level of HbF.
32

 The exact mechanism by which 

HU induces HbF remains unclear. The increase in 

HbF appears to interfere with HbS polymerization 

both by preventing contact between adjacent HbS 

molecules and by forming mixed hybrids with 

HbS that have greater solubility than HbS 

polymers.
33

 HU may increase HbF indirectly by 

killing dividing late erythroid cells, causing 

recruitment of more primitive erythroid precursors 

which produce high levels of HbF, or by acting 

directly on the primitive precursors stimulating 

HbF production.
34

 However, induction of HbF was 

unlikely to explain all the clinical effects of HU. 

Prior to any rise in HbF, sickle erythrocytes show 

reduced adhesion to endothelial cells. HU reduces 

adhesion molecule expression on sickle 

erythrocytes, including very late activation 

antigen-4 and CD36.
35

 Other rheological 

properties of sickle erythrocytes, including 

erythrocyte hydration status and whole cell 

deformability, can be increased by HU. HU also 

reduces white blood cells and platelets reducing 

their roles in vascular injury. Neutrophilia has long 

been identified as a marker of severity in sickle 

cell disease.
27

 Neutrophils release pro-

inflammatory mediators involved in endothelial 

damage and cytokine release, which trigger 

sickling, and contribute to slow transit time via 

their adhesive properties and an increase in blood 

viscosity.
36

 The drug also produces nitric oxide, 

which stimulates soluble guanylate cyclase (an 

enzyme containing heme iron) resulting in the 

production of HbF.
37

 Some of the clinical effects  
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Table 1. Randomized trials comparing HU with placebo. 

Study 
Age 

Median (range) 

Patients 

(HU/no HU) 
Outcome for HU 

Charache et al. [28] 30 years (18 – 59) 
152/147 

(HU/placebo) 

↓ vaso-occlusive crises 

↓ acute chest syndrome 

↓ transfusions 

Wang et al. [41] 13.5 months 
96/97 

(HU/placebo) 

↓ vaso-occlusive crises 

↓ acute chest syndrome 

↓ dactylitis 

Wang et al. [44] 13.6 years (5 – 53) 
22/22 

(HU/placebo) 
No difference 

Jain et al. [43] 12.2 years (5 – 18) 
30/30 

(HU/placebo) 

↓ vaso-occlusive crises 

↓hospitalizations 

↓ transfusions 

Ware et al. [42] 13 years (5 – 18) 
67/66 

(HU/placebo) 
No difference 

Lebensburger et al. [46] (0.75 – 1.5 years) 

21/25 

(HU/phlebotomy with chronic 

transfusions and chelation) 

↓ vaso-occlusive crises 

 

Thornburg et al. [47] (0.75 – 1.5 years) 

96/97 

(HU/phlebotomy with chronic 

transfusions and chelation) 

↓ acute chest syndrome 

 

Alvarez et al. [45] (5 – 19 years) 

67/66 

(HU/phlebotomy with chronic 

transfusions and chelation) 

No difference in vaso-occlusive 

crises and in acute chest 

syndrome 

Abbreviation: HU, hydroxyurea. 

 

are mediated by nitric oxide-induced 

vasodilatation or reduced platelet activation. 

 

The Use of HU in Sickle Cell Disease. HU was 

initially tested in anemic baboons.
38

 The first 

patients were tested in 1984 showing a response 

within 72 hours after therapy with an elevated 

level of HbF.
23

 Subsequent prospective studies 

confirmed the efficacy and tolerability of HU in 

this setting. Recent reviews of the literature on HU 

therapy in sickle cell disease showed that HU was 

consistently associated with overall increases in 

HbF, a reduction of vaso-occlusive crises, 

decreased rates of hospitalization, and prevention 

of pulmonary complications.
39,40 

The benefit of 

HU regarding the frequency of acute clinical 

events was demonstrated in randomized studies 

(Table 1),
28,41-47

 but also in observational studies 

(uncontrolled longitudinal studies, retrospective 

case series, or prospective cohort studies using 

historical controls) (Table 2).
48-64

 

 

Treatment with HU in adults: Most studies 

included both children and adults. Among specific 

studies for adult patients, the most important was a 

multicenter, double-blind, randomized controlled 

study that ran from 1992 to 1994 and that was 

stopped early after inclusion of 299 patients, 

because of a significant reduction of events in the 

Hu arm.
28

 HU improved the clinical course of 

sickle cell disease by significantly reducing the 

annual rate of crises, increasing the median time to 

the first and second crisis, reducing the incidence 

of acute chest syndrome, and reducing transfusion 

requirements. Furthermore, the recommended dose 

of HU was not always needed to achieve a clinical 

response. Among the other randomized studies, no 

difference was noted in terms of frequency of 

vaso-occlusive crises in three studies.
42,44,45

 In one 

study, there were equivalent liver iron contents 

and similar rates of stroke in both arms.
42

 

However, two of these three trials terminated 

earlier due to poor accrual. In the third study 

(SWiTCH trial), given the low rates of acute chest 

syndrome observed in the trial, the number of 

patients was not sufficient to determine whether 

there was a true difference between acute chest 

syndrome in the two arms.
45

 Although studies of 

various designs showed that HU decreased the 

occurrence of acute chest disease, most studies 

provided lower-quality evidence for such 

effect.
49,58,62-64

 Regarding pulmonary hypertension 

and tricuspid regurgitant velocity, the lack of 

randomization and prospective follow-up makes 

interpretation of results difficult. If most studies 

showed no difference among groups
26,65-70

 or even 

higher proportion of patients with prior exposure 

to HU in a group with increased tricuspid 

regurgitant velocity,
71

 some studies tended to 

provide evidence of HU effect.
72,73

 Evidence for 

primary stroke prevention was limited to 

observational   data.
50,58

  While   current   evidence  
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Table 2. Observational studies addressing acute clinical events with HU in sickle cell anemia. 

Study 
Population 

Study design 
Patients receiving HU Outcome for HU 

Italia et al. [50] 
Children/Adults 

Prospective 
77 

↓ vaso-occlusive crises 

↓ acute chest syndrome 

↓ transfusions 

↓ hospitalizations 

Olivieri et al. [63] 
Children/Adolescents 

Retrospective 
17 

↓ acute chest syndrome 

 

Koren et al. [62] 
Children/Adults 

Retrospective 
18 

↓ acute chest syndrome 

 

Nzouakou et al. [52] 
Adolescents/Adults 

Retrospective 
123 

↓ acute chest syndrome 

↓ stroke 

↓ hospitalizations 

↓ mortality 

Singh et al. [56] 
Adults 

Prospective 
24 

↓ vaso-occlusive crises 

↓ hospitalizations 

Gulbis et al. [59] 
Children/Adolescents 

Retrospective 
32 

↓ acute chest syndrome 

 

Hankins et al. [60] 
Children 

Retrospective 
21 

↓ acute chest syndrome 

 

Steinberg et al. [57] 
Adults 

Prospective 
255 

No difference for stroke 

↓ mortality if HU for at least 5 

years 

↓ pulmonary complications 

Voskaridou et al. [58] 
Adults 

Prospective 
131 

↓ vaso-occlusive crises 

↓ acute chest syndrome 

↓ transfusions 

↓ hospitalizations 

↓ mortality 

Jain et al. [61] 
Children/Adolescents 

Retrospective 
144 

↓ acute chest syndrome 

 

Ali et al. [48] 
Children 

Retrospective 
10 ↓ stroke 

Gilmore et al. [49] 
Children/Adults 

Retrospective 
62 

↓ vaso-occlusive crises 

↓ acute chest syndrome 

↓ transfusions 

↓ hospitalizations 

Patel et al. [53] 
Children/Adults 

Prospective 
118 

↓ vaso-occlusive crises 

↓ transfusions 

Lobo et al. [51] 
Children 

Retrospective 
267 

↓ acute chest syndrome 

↓ hospitalizations 

↓ mortality 

Silva-Pinto et al. [64] 
Children/Adults 

Retrospective 
37 

↓ acute chest syndrome 

 

Rigano et al. [54] 
Adults 

Retrospective 
104 

↓ vaso-occlusive crises 

↓ hospitalizations 

Sharef et al. [55] 
Children 

Retrospective/Prospective 
142 

↓ acute chest syndrome 

↓ hospitalizations 

Jayabose et al. [87] 
Children 

Prospective 
15 ↓ vaso-occlusive crises 

Ferster et al. [89] 
Children 

Retrospective 
93 

↓ hospitalizations 

↓ days in hospital 

Abbreviation: HU, hydroxyurea. 

 

supports the use of chronic blood transfusions to 

prevent progressive disease and especially clinical 

stroke, HU represents an attractive alternative 

treatment option in order to avoid indefinite blood 

transfusion therapy which can lead to serious 

complications such as infections, iron overload, 

transfusion reactions, and erythrocyte allo- and 

auto-antibody formation.
74

 The therapeutic switch 

from transfusions to HU should follow an overlap 

period of dual therapy because the benefits of HU 

have a slow onset and treatment should reach a 

stable maximum tolerated dose. After the switch, 

the problem of hemosiderosis persists. Despite 

effective oral chelators, the greatest challenge of 

serial phlebotomy in patients with sickle cell 

anemia is the underlying anemia, but HU therapy 

at a stable maximum tolerated dose typically raises 

the hemoglobin concentration, allowing a safe 

procedure.
75

 Before the era of HU, the average life 

expectancy was in the 40s.
27

 HU was associated 
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with decreased mortality in symptomatic patients 

compared with those receiving only short-term HU 

or no HU.
57

 It typically takes less than 6 months 

for patients to be stabilized on a dose that defines 

their maximal tolerated dose. Before the maximal 

tolerated dose is established, the number of cells 

with high HbF levels increases.
44,50,53,56

 At 6 

months, the HbF level is typically doubled, the 

hemoglobin level is increased, and the absolute 

reticulocyte count, bilirubin level, and lactate 

dehydrogenase level are reduced.
32

 Patients should 

receive HU therapy as a continuous treatment 

unless adverse events occur. The optimal dose is 

still a source of debate. Dose escalation has been 

suggested toward the maximum tolerated dose 

(MTD). However, the stepwise approach of dose 

escalation generally requires several months and 

patients receiving HU have variable 

pharmacokinetics and pharmacodynamics.
76

 

Creatinine, reticulocyte count, and body mass 

index are among the simplest parameters that best 

predicted the HU maximum tolerated dose. It has 

been demonstrated a near linear dose response to 

HU. The treatment dose correlated positively with 

both the plasma drug concentration and the 

percentage of HbF response.
77

 However, the dose 

does not need to be titrated to a particular HbF 

threshold. The dose can be escalated simply to 

reach an acceptable nontoxic degree of marrow 

suppression with target counts for both neutrophils 

and reticulocytes.
78

 It has been suggested that HU 

may have benefits for the less common genotypes, 

especially HbSC or HbS/β
+
 thalassemia.

79
 Because 

the primary effect of HU is damaging DNA 

replication by inhibiting ribonucleotide reductase, 

concerns have been raised about an oncogenic 

potential, especially after prolonged use. Although 

fears have been amplified by its original use as 

chemotherapy for chronic myeloproliferative 

diseases, which could evolve to acute leukemia, 

oncogenicity of HU is probably quite low or non-

existent. Only a few cases of acute leukemia have 

been reported, but do not appear more frequent 

than in the untreated population.
80

 Similarly, the 

benefits and harms of HU therapy in women with 

sickle cell disease during pregnancy and lactation 

represent a relevant issue.
79

 No clear teratogenic 

phenotype exists for HU, but more data should be 

collected. Women with sickle cell anemia 

receiving HU have had successful normal 

pregnancies.
81

 A variety of factors can lead to 

treatment failure. Poor adherence is recognized as 

a common problem and seems in part related to 

adverse events of the drug and inconvenience 

associated with monitoring. 

 

Treatment with HU in children: The use of HU in 

children brings theoretically the best satisfactions 

regarding prevention of end-organ damage. 

However, it also carries potential risks in terms of 

growth and development and remains questionable 

for the risk of secondary malignancy after 

exposure to the drug for long periods. 

Observational studies in children have noted 

significant improvements in splenic uptake, 

glomerular filtration rate, renal hypertrophy, the 

ability to concentrate urine, microalbuminuria, and 

retinopathy.
82-86

 As in adults studies, beneficial 

results with HU were reported showing a 

reduction in hospital admissions and days spent in 

the hospital, and potentially a reduced frequency 

of acute chest syndrome.
62,87-89

 Evidence on 

benefits of HU use in children below 5 years is 

that it is associated with decreased pain crises and 

dactylitis.
41,90

 However, most studies provided 

lower-quality evidence for the occurrence of acute 

chest syndrome.
46,47,60,61

 There were few pieces of 

evidence that HU prevents stroke or the recurrence 

of stroke in children.
91

 As in adults, evidence for 

primary stroke prevention was limited to 

observational data.
51

 HU treatment was shown to 

lower secondary stroke rates in children with 

previous stroke.
92

 Transcranial Doppler screening 

is used for primary stroke prevention. Abnormal 

velocities are the most common indication to 

commence chronic transfusion therapy in children. 

HU can lower transcranial Doppler velocities
93

 

and its utility in this setting is under 

investigations.
94

 Although case reports have 

shown a reversal of splenic dysfunction after HU 

therapy, larger studies demonstrated that HU is 

clearly not enough to completely prevent the 

major complications of the disease.
95

 Growth and 

development appeared to be unaffected in all 

studies.
95,96

 HU should, therefore, be offered early 

and routinely as a preventive treatment for sickle 

cell anemia in children. 

 

Distribution of HbF. More than 75% of the 

hemoglobin of the newborn is HbF. It diminishes 

over a period of several months to adult levels. 

HbF is becoming <2% by one year-of-age and 

<1% by 2 years. In most patients with sickle cell 

disease, HbF levels are increased. HbF is produced 
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by a small number of erythroid precursors: the F-

cells. Both HbF concentration and its distribution 

among erythrocytes are heritable. A correlation 

has been demonstrated between the number of F-

cells and the percent of HbF in the hemolysate.
97

 

The concentration of HbF in each F-cell (HbF/F-

cell) is changing during maturation.
98

 However, 

quantitative methods for measuring this amount 

and plotting the distribution of HbF among F-cells 

are not available. The distribution of HbF 

concentrations among F-cells is the most critical 

element in the physiopathology of sickle cell 

anemia.
99

 Compound heterozygosity for HbS and 

gene deletion hereditary persistence of HbF 

(HPFH) represents a condition in which the typical 

HbF level is 30%.
100

 In this setting, HbF is 

distributed among all erythrocytes, each cell 

containing about 10 pg of HbF. Patients with 

sickle cell anemia have individually characteristic 

distributions of HbF/F-cell regardless of their total 

HbF level.
101

 HU can induce HbF in most patients, 

but the HbF response to HU is highly variable.
102

 

Higher HbF levels were associated with a reduced 

rate of painful episodes, fewer leg ulcers, less 

osteonecrosis, and less frequent acute chest 

syndromes. However, HbF level had a weak or no 

clear association with priapism, urine albumin 

excretion, stroke and silent cerebral infarction, 

systemic blood pressure, and tricuspid regurgitant 

velocity.
103 

HbF is  unevenly  distributed when 

high levels are successfully induced with HU. 

Total HbF and F-cell percentages are generally not 

good predictors of disease severity since they 

provide no information on F-cells with sufficient 

levels of HbF to protect against polymer-induced 

damage. Very few protected F-cells are present 

when HbF levels are about 5%, but more cells are 

possible when they reach 10%.
99

 The calculated 

mean HbF/F-cell in HU-treated sickle cell anemia 

is about 8 pg. Early starting treatment seems to 

retard the fall in HbF, but many F-cells will 

continue to be poorly protected from polymer-

induced damage even with 20% HbF.
99

 

 

A Clinical and Economic Problem. It is 

estimated that 7% of the world population are 

carriers for hemoglobin disorders. Sickle cell 

disease is the most important potentially 

devastating, recessively inherited condition. The 

β-globin gene point mutation resulting in HbS has 

undergone evolutionary selection in the world 

because of its overwhelming malaria protective 

effects. High prevalence areas include Africa, the 

Middle-East, and Indian subcontinent with sickle 

cell trait affecting up to 300 million individuals 

worldwide.
104

 In Africa, one on 14 persons with 

sickle cell anemia is an asymptomatic carrier.
32

 

One in 700 newborns is affected.
105

 However, 

recent studies suggest that only 16% of polled 

individuals are aware of their sickle cell trait 

status, and only 37% of parents report having 

received notification of the sickle cell trait status 

of their children.
106,107

 Sickle cell disease 

represents then an emerging global health burden 

in limited-resource countries, in which the 

development of sickle cell disease strategies 

should include sickle cell awareness, early 

detection, and the development of care and 

treatment programs.
108-110

 The main 

recommendation is to educate all patients and their 

families about HU therapy. Although Food and 

Drug administration-label recommends treatment 

only for adults with sickle cell anemia severely 

affected with at least 3 painful crises over the prior 

12 months, there are strong recommendations to 

treat adults with common clinical symptoms and 

to offer HU to children after age 9 months, 

regardless of clinical symptoms.
111

 HU is 

relatively cheap. Especially in limited-resource 

countries without a safe and adequate blood 

supply, HU may represent a clinically useful and 

cost-effective therapeutic strategy for preventing 

cerebrovascular disease.
112

 In the United States, it 

was reported per year 113,000 hospitalizations for 

sickle cell disease generating total hospital costs of 

about $488 million.
113

 The average cost of HU 

was estimated at about $1,000 per year plus $400 

per year for visits and tests.
28

 This cost was offset 

by reduced costs for hospitalization, emergency 

room visits, and transfusions. The net savings was 

estimated at about $5,000 per patient per year.
114

 

 

Beyond HU Therapy. HU is currently the only 

US Food and Drug Administration-approved 

medication to modify the disease course in sickle 

cell disease. However, elucidation of the multiple 

pathophysiologic mechanisms leading to vaso-

occlusion and tissue injury in sickle cell disease is 

currently resulting in the identification of new 

treatment modalities.
115

 In addition to HU, a 

number of drugs have been proposed: histone 

deacetylase inhibitors,
116

 decitabine,
117

 

thalidomide and related compounds,
118

 

pomalidomide.
119

 Optimally efficient induction of 
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HbF may require combined use of drugs.
120

 

Carbon monoxide is also a potent antisickling 

agent that attaches to Hb and therefore reverse 

HbS polymerization. Shifting the oxyhemoglobin 

to the left or preventing cell dehydration can 

ameliorate sickling.
121

 Sanguinate is a bovine 

pegylated Hb product designed to reduce sickling 

by delivering carbon monoxide to HbS and then 

carrying O2.
122

 Because adhesive cell interactions 

contribute to vaso-occlusion, drugs targeting either 

red blood cell or leukocyte adhesion appear as 

attractive therapeutic modalities. Drugs targeting 

selectin-mediated adhesion are being especially 

investigated including the selectin inhibitors GMI-

1070 (rivipansel)
123

 and the humanized 

monoclonal antibody SelG1.
124

 Heparin 

derivatives, such as sevuparin or tinzaparin, also 

have a well-known ability to inhibit adhesive 

interactions via P-selectin.
125,126

 Targeting 

signaling pathways that activate adhesion 

molecules is another potential therapeutic 

modality. This can be achieved via beta-blockers 

administration
127

 or through the use of MEK 

inhibitors
128

 that might reduce red blood cell 

adhesion. Poloxamer  188, a nonspecific inhibitor 

of adhesion is also currently being studied.
129

 

Vaso-occlusion can engender an inflammatory 

response typical of hypoxia/reperfusion injury. 

Down-regulation of inflammatory pathways can, 

therefore, represent another approach to ameliorate 

sickle cell disease. Invariant NKT cells are 

involved in this pathogenesis. Their activation can 

be down-regulated by activation of the adenosine 

A2A receptor. Regadenoson is a partially selective 

adenosine A2A receptor agonist. It has been 

proposed in the treatment of vaso-occlusive crisis, 

which involves invariant NKT cells as contributors 

to the inflammatory component.
130

 A humanized 

monoclonal antibody against invariant NKT cells 

has also recently shown some efficacy.
131

 Because 

inflammatory pathways are important to both 

vaso-occlusion and tissue injury, targeting 

inflammatory mediators, such as leukotrienes, has 

also been proposed as a promising approach for 

the development of novel therapies in sickle cell 

disease.
132

 Intravenous γ globulin infusion can also 

reduce inflammation via inhibition of neutrophil 

adhesion.
133

 Statins that decrease endothelial 

inflammation have also been studied in sickle cell 

disease.
134

 Drugs that increase HbF levels are the 

archetypal antisickling agents, because HbF 

interferes with polymerization of HbS, thereby 

lessening hemolytic rate and resulting in total Hb 

levels seen with HU therapy. The interference 

lengthens the delay time, allowing cells to avoid 

getting stuck in the microvasculature, even if 

hemolysis does not happen. Despite promising 

results, high mortality rates in patients older than 

16 years and a paucity of suitable HLA-identical 

donors have limited the implementation of 

allogeneic stem cell transplantation in this patient 

population.
135

 In the future, correction of the β-

globin gene may be the ideal approach to curing 

sickle cell disease. However, there are still many 

concerns regarding this approach. 

Despite the development of these many new 

treatment modalities and the promising results of 

the initial trials, HU remains a well-tolerated, safe, 

cheap, and efficacious for most patients with 

sickle cell disease, and should currently be 

considered standard-of-care for this disease. 

 

Conclusions. HU is a remarkably effective drug 

for a large proportion of patients with sickle cell 

disease and appears to be the best currently 

available treatment option in this setting. 

Treatment is indicated for patients with “frequent 

pain episodes, history of acute chest syndrome, 

other severe vaso-occlusive events, or severe 

symptomatic anemia”.
32

 Treatment endpoints 

remain “less pain and improved well-being, 

increased HbF to 15%-20%, increased hemoglobin 

level, and acceptable myelotoxicity”.
32

 However, 

studies regarding a better understanding of HU 

effects, the ability to predict individual response, 

and the clinical applications for modifying disease 

effects are still ongoing. Two decades after the 

approval of HU, most patients with sickle cell 

disease are suboptimally treated with it, or not 

treated at all since this disease has continued to be 

treated with analgesics for pain relief. HU remains 

underutilized for a variety of reasons. It is likely 

that optimal therapy will only be achieved with a 

multi-targeted approach. However, any of the new 

therapies may be similarly underused, which may 

be the most difficult problem. HU is currently 

prescribed only sparingly and therefore has only 

limited effectiveness. Early initiation and broader 

use of HU should alter the natural history of sickle 

cell anemia. HU should be extended to low-

resource settings, where the burden of the disease 

and the need for such a drug is the greatest. 
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