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Abstract. Objectives: To explore the incidence of vaso-occlusive crisis (VOC) in Blood Group 

“O” sickle cell disease (SCD) patients, and correlate it with the blood group and 

thrombospondin (TSP) levels. 

Methods: In 89 consecutive SCD patients, blood samples were obtained for von Williebrand 

factor  (vWF:Ag) antigen, collagen binding activity (CBA), ristocetin binding activity (RCo), 

blood group typing, C-reactive protein (CRP), high performance liquid chromatography 

(HPLC), Serum TSP 1 and TSP 2 levels, complete blood counts (CBC), lactic dehydrogenase 

(LDH) levels, liver function (LFT) and renal function tests (RFT) during VOC episodes and in 

steady state conditions.  

Results: In steady state SCD patients (n=72), “O” blood group patients (n=37) showed a 

significantly higher median serum TSP 1 and TSP 2 levels as compared to non-O blood group 

patients [n=35] [p <0.05, Mann-Whitney test]; with an inverse relation between vWF:Ag, Factor 

VIII:C and TSP levels. Furthermore, the serum TSP 1 and TSP 2 levels were significantly higher 

in patients presenting with acute VOC [n=17], as well as in those with repeated VOC’s (group 1, 

n=16), especially amongst blood group “O” patients [p, <0.05, Mann-Whitney test].  

Conclusions: The study demonstrates an inverse relation between TSP and vWF levels, in blood 

group “O” SCD patients, with an upregulation of the TSP levels. Expectedly, during active VOC 

crisis, the TSP 1 and TSP 2 levels were significantly elevated.  
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Introduction. Sickle cell disease (SCD) is a 

condition with protean manifestations and 

demonstrates considerable clinical variability.
1,2

 

The disease constitutes one of the most frequent 

causes of hospitalizations in the Sultanate of 

Oman.
3,4

 It is characterized by chronic hemolysis, 

frequent infections, recurrent occlusion of 

microcirculation; leading to painful crises, chronic 

organ damage and premature death. Intermittent 

painful episodes due to the vaso-occlusive crisis 

(VOC) is the most common clinical manifestation 

of SCD, but subclinical episodes also occur.
5
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The mechanisms by which VOC’s are initiated 

is complex and multifactorial.
5–9

 Sickle red blood 

cells (RBCs) contribute to the initial VOC process 

and play a significant part in nearly all the clinical 

manifestations of SCD. The pro-adhesive sickle 

cells bind to endothelial cell P-selectin, E-selectin, 

intercellular adhesion molecule-1, vascular cell 

adhesion molecule-1, CD36, leading to the 

complex process of endothelial activation.
8-11

 

Polymerization of deoxy-HbS is an ongoing 

process in SCD and plays the most significant role 

in the process of sickling of RBCs in SCD.
12

 Thus, 

the end result of multiple episodic cycles of 

polymerization of deoxy-HbS with dehydration of 

the RBC is a dense, irreversibly sickled red cell. 

However, when oxygenated, an irreversibly sickle 

cell may contain no polymer but is nonetheless 

distorted in shape and may still contribute to vaso-

occlusion.
12-14

 These features make negotiation of 

the microvasculature difficult, if not impossible, 

for these sickle erythrocytes.
14

  

RBCs in SCD also appear to have an increased 

binding affinity to the vascular endothelium. The 

degree of affinity correlates strongly with the 

severity of clinical disease. Several molecular 

interactions contribute to this endothelial affinity 

and are mediated by increased levels of integrin 

VLA-4 (α4β1)
15

 and membrane glycoprotein IV 

(CD36).
16

 VLA-4 mediates adhesion both to 

endothelial vascular cell adhesion molecule-1 

(VCAM-1) and to fibronectin present in activated 

endothelium, whereas, CD36 mediates adhesion 

via thrombospondin to αVβ3 integrin on activated 

endothelium. Thrombospondin is normally present 

in platelet α granules and is released from 

activated platelets.
15,16

 Thrombospondin binds 

CD47 (integrin-associated protein) expressed on 

RBC membranes in addition to binding with 

CD36.
7,17

 The endothelial selectin activation by 

adhesion molecules expressed in sickle red cells, 

and their inhibition of endothelium-dependent 

vasorelaxation, by blocking the endothelium-

derived relaxing factor (EDRF)
18,19,20

 contribute to 

worsening vaso-occlusion. Further, it has long 

been known that the microvasculature of patients 

with SCD may develop intimal hyperplasia. This 

creates irregular areas of endoluminal narrowing, 

which worsen vaso-occlusion by promoting 

thrombosis. This process has been documented in 

the cerebral and splenic vascular beds.
21

 

Many factors are known to affect the frequency 

of VOC, such as HbF concentration, sickle 
s
 

haplotypes, and the presence of various adhesive 

substances, which enhance the sickle red cells 

adherence to the subendothelial structures. TSP 

and von Willebrand factor (vWF) are among the 

proteins that have been implicated as mediators of 

the adhesive interactions between sickle 

erythrocytes and the blood vessel wall.
22-24

 

However, sickle erythrocytes were found more 

adherent to immobilized TSP than to vWF.
25

 

Furthermore, TSP1 has been involved in the 

liberation of toxic membrane vesicles from RBCs, 

which contributes to the degradation of vascular 

function and promote vasoocclusion.
26

 

Thrombospondin is known to bind CD47. 

However, although HbA and HbS RBCs express 

the same amount of CD47, adhesion of TSP to 

HbS RBCs is preferentially more, due to an 

upregulation of TSP in SCD patients which is 

mediated by VLA-4.
15

 Further, vWF also induces 

sickle erythrocyte adhesion by interaction with 

endothelial αVβ3 integrin. But, the binding of 

sickle RBCs to TSP was found to be inhibited by 

vWF.
25

 Therefore, the perturbation in the vascular 

endothelium, induced by sickle RBC’s, involves 

complex interactions between adhesive proteins, 

culminating in the VOC process and is 

orchestrated by the various cytokines, a 

mechanism quite different from thrombosis. 

An increased risk of venous thromboembolism 

(VTE) is reported in non-O blood group 

patients,
27-30

 as well as in patients with sickle cell 

disease. Kostner et. al
27

 reported that the odds ratio 

(OR) for VTE in individuals with non-O blood 

groups vs. “O” blood group individuals was 2.0 

(95% CI, 1.4–2.9). After adjustment for factor 

VIII and VWF levels, the risk of VTE among non-

O blood group carriers was still significantly high 

(OR 1.5; 95% CI, 1.0–2.2). Similar results were 

also reported by Tirado et. al in 2005,
28

 Spiezia et. 

al in 2013,
29

 Franchini et. al in 2014,
30

 Blais et. al 

in 2016
31 

and by Ahmed et al in 2015
32

 

specifically in sickle cell trait patients.  

Interestingly, in a pilot study on consecutive 

SCD patients presenting with VOC, we observed a 

higher incidence in “O” blood group than the non-

O blood group phenotype. Furthermore, since we 

know from the literature that vWF levels in blood 

group “O” subjects are on an average 25% lower 

than the non-O blood group subjects,
33,34

 we 

undertook this study, to see whether there is a 

relationship between blood group “O”, vWF and 

TSP levels and VOC occurrence in SCD patients.  
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Methods. 89 consecutive SCD patients (76-HbSS, 

10-Hbsthal
0

, 3-Hbsthal
+

) were prospectively 

enrolled in this study after informed consent and 

approval by the Medical Research and Ethical 

Committee at the Sultan Qaboos University 

Hospital. 17 patients were recruited from the 

inpatient service during episodes of acute VOC’s, 

whereas the remaining 72 patients consented at the 

outpatient haematology clinics in the steady state. 

vWF antigen, ristocetin cofactor activity, collagen 

binding activity, vWF multimer analysis, blood 

group typing, CRP, HPLC, Thrombospondin [TSP 

1], TSP 2, CBC, LFT, LDH, and RFT were 

recorded at enrollment. Severity and number of 

VOC’s /year were assessed by stratifying these 

patients into 2 groups. Group 1 consists of patients 

with a history of significant VOC’s, [with >4 

VOC’s/year needing inpatient care] and Group 2 

consisting of SCD patients with non-frequent-

VOC’s [with <4 VOC’s/year].  

Blood was obtained by venipuncture into 

vacutainer tubes with Ethylene diamine tetra acetic 

acid anticoagulant, 3.2% sodium citrate, and plain 

tubes. Complete blood counts were performed 

with an electronic cell counter (Abbott CELL-

DYN® Sapphire, Abbott Diagnostics, Abbott 

Park, IN). A fresh hemolysate was prepared from 

each sample and subjected to cation-exchange 

HPLC (Bio-Rad VARIANT, Bio-Rad 

Laboratories, Hercules, CA) to study the sickle 

phenotype. Serum was separated from a clotted 

tube sample at 1,000g at 4
0
C for 10 min and stored 

at -70
0
C for Thrombospondin [ELISA] and other 

biochemical assays. CRP was estimated by rate 

nephelometry, in addition to the various 

biochemical parameters of renal and liver 

function. 

Whole blood samples were collected for 

coagulation studies in 3.2% sodium citrate (at a 

ratio of 9:1 v/v) and centrifuged the same day 

within 2 hours of collection, aliquoted, and stored 

at -70
0
C. Plasma activities of fibrinogen (Claus 

assay), coagulation assays for prothrombin time, 

activated partial thromboplastin time were 

performed on the same day [Dade Behring 

reagents]. Platelet poor plasma samples [5 aliquots 

of 1 ml plasma each] were frozen to perform the 

vWD phenotypic studies. 

The vWF: Ag assay was performed by the Dade 

Behring vWF Ag latex agglutination method for 

quantitative determination of vWF Ag in human 

plasma by immunoturbidometry, according to the 

procedure supplied by the manufacturer (Dade 

Behring vWF Ag kit). The vWF: RCo was 

measured by platelet aggregometry using normal 

lyophilized platelets with CHRONO PAR 

[ristocetin] for the CHRONO-LOG aggregometer. 

The vWF: CBA was measured by an ELISA for 

the determination of vWF function in the human 

plasma using Life Diagnostic ELISA kits in 

duplicate, according to the manufacturer’s 

instructions. Factor VIII: C levels was measured 

using a one-stage assay. [Dade Behring reagents] 

TSP 1 and TSP 2 concentrations in serum were 

determined using the Quantikine Human 

Thrombospondin Immunoassay kits [R & D 

systems, Minneapolis, MN]. This assay employs 

the quantitative sandwich enzyme immunoassay 

technique and contains NS0-expressed 

recombinant human Thrombospondin.  

 

Statistical Analysis. Data was analyzed with IBM 

Statistical Package for the Social Sciences 

software (SPSS, version 19.0; SPSS, Chicago, 

Illinois, USA). Continuous variables were 

expressed as mean +SD, whereas categorical 

variables were expressed as numbers 

(percentages). Means of continuous and 

categorical variables were compared using Mann-

Whitney U and Fisher’s exact tests respectively. 

The vWF: Ag, vWF: CBA, FVIII: C and TSP 

levels showed a skewed distribution and were 

expressed as median values with interquartile 

ranges. A p value <0.05 was considered as 

statistically significant. 

 

Results. The mean age +SD of this SCD patient 

cohort was 23.8 + 6.3 (range 15 to 48 years). 50 

patients were males (56%) and 17 (19%) presented 

with acute VOC’s; whereas 16 (18%) (Group 1) 

comprised of patients with a history of significant 

VOC’s [>4 VOC’s/year]. 37 patients (42%) were 

on stable hydroxyurea therapy. 72 patients (81%) 

were enrolled in ‘‘steady state’’ defined as “no 

acute illness or crisis or infection in the past 3 

months” when they visited the clinic, with a prior 

appointment as an outpatient. Amongst these, 37 

(51%) had “O” blood group phenotype, whereas, 

35 had non-O blood group [A group -18 patients; 

B group -14 patients and AB group -3 patients]. 

None of the study participants enrolled were on a 

chronic exchange transfusion program.  

Table 1 summarizes the vWF parameters and 

TSP 1 and TSP 2 levels in the all the steady state

http://www.mjhid.org/
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Table 1. vWF:Ag, vWF:CBA, FVIII:C, Thrombospondin [TSP 1 and TSP 2] levels [Median, IQ range] with Age [Mean+SD] & ABO blood 

Group distribution in SCD patients in steady state[n=72]. 

ABO Blood Group 
Age, yrs. 

M+SD 
vWF:Ag, iu/mL vWF:CBA,iu/mL FVIII:C, iu/mL TSP 1, ng/mL TSP 2,   ng/mL 

“0” [n=37] 
23.35,   

+6.29 

1.14,    

0.86-1.37 

1.3    

0.9-1.53 

1.27,    

1.1-1.6 

31,    

25.2-49 

939, 

828-1064 

Non-O [n=35] 
24.85, 

+6.14 

1.35,   

0.84-1.77 

1.6    

1.2-1.94 

1.4,   

1.1-1.8 

24.8,   

16.8-28.4 

922, 

824.5-960.75 

p value 0.26* 0.09* 0.036** 0.16* 0.045** 0.042** 

** p<0.05 - Significant, Mann-Whitney; NS* – Not significant 

 

SCD patients [n=72]. Amongst these, in the “O” 

blood group patients [n=37], the median serum 

TSP 1 and TSP 2 levels were significantly higher 

than the non-O blood groups SCD patients [n=35] 

[p<0.05, Mann-Whitney U test]. Furthermore, 

there was an inverse correlation between the TSP 

levels and Factor VIII: C levels. The inter-assay 

and intra-assay CV for thrombospondin assay 

were 6.3% and 5% respectively. 

Table 2 summarizes the vWF parameters and 

TSP 1 and TSP 2 levels in the two subgroups of 

the study participants, namely those in steady state 

[n=72] and those with acute VOC’s [n=17]. In the 

SCD patients admitted for VOC’s, the median 

serum TSP 1 and TSP 2 were significantly higher 

than those in steady state SCD [p<0.05, Mann-

Whitney U test]. Furthermore, all the vWF 

parameters studied were significantly lower in the 

painful crisis patients. The number of SCD 

patients with “O” blood group were relatively 

higher in the painful crisis group (65%) but was 

not statistically significant. However, the number 

of SCD patients on HU were significantly higher 

in the painful crisis group (64%), although the 

HbF levels were similar. The median serum TSP 1 

and TSP 2 were higher in the “O” blood group 

subsets comparing steady state group and “acute” 

crisis group [p<0.05, Mann-Whitney U test]. 

Table 3 summarizes the vWF parameters and 

TSP 1 and TSP 2 levels in groups 1 and 2, namely 

those with a history of frequent VOC’s [n=16] and 

those with infrequent VOC’s [n=73]. The median
 

Table 2. Age, [Mean+SD], Clotting times, Fibrinogen, vWF:Ag, vWF:CBA, FVIII:C, Thrombospondin [TSP 1 and TSP 2] levels [Median, 

IQ range] in the SCD patients in steady-state and VOC’s and in “O” blood group patients.  

SCD patients  

[n=89] 

Steady State  

[n=72] 

Painful Crisis 

[n=17] 

Steady State Bl. Gp. 

“O” [n=37] 

Painful Crisis    Bl. 

Gp “O” [n=11] 

Age, yrs., 

[Mean+SD]  

24.2 

+ 6.53 

23.4 

+ 5.1 

23.35 

+ 6.29 
22.8         + 2.63 

PT,secs   

[Mean+SD]  

10.27 

+ 0.5 

11.3 

+ 0.8 

10.4 

+ 0.4 

11.2 

+ 0.6 

APTT, secs  

[Mean+SD]  

36.11 

+ 2.3 

38.3 

+ 2.5 

34.8 

+ 1.8 

42.3 

+ 2.2 

TT,sec    

[Mean+SD]  

14.8 

+ 1.77 

15.2 

+ 1.9 

14.8 

+ 1.8 

17.2 

+ 2.1 

Fibrinogen, g/L  

[Mean+SD]  

2.57 

+ 0.7 

3.86 

+ 0.9 

2.7 

+ 0.6 

4.5 

+ 2.3 

vWF:Ag, iu/mL,Median 

Interquartile Range 

1.2 

0.8-1.6 

0.9$ 

0.8-1.7 

1.14 

0.86-1.37 

0.89 

0.8-1.75 

vWF:CBA, iu/mL,Median 

Interquartile Range 

1.44 

1.1-1.7 

1.1$ 

0.9-1.8 

1.3 

0.9-1.53 

0.99 

0.9-1.62 

FVIII:C, iu/mL,Median 

Interquartile Range 

1.3 

1-1.65 

0.9$ 

0.75-1.36 

1.27 

1.1-1.6 

0.97 

0.84-1.36 

TSP 1,iu/mL,Median 

Interquartile Range 

20 

12.4-29 

27.6$ 

22.6-36.6 

20.4 

10-41.4 

31$ 

25.2-49 

TSP 2,iu/mL,Median 

Interquartile Range 

791 

677.5-973.5 

929$ 

828-1035 

794 

708-1188 

939$ 

828-1064 

% SCD patients with “O” Blood 

Group 
 51% 65%*  

HbF levels,% in SCD patients on HU 

Mean + SD 

6.7, 

+ 5.7 

*5.9, 

+ 6.5 
  

% SCD patients on HU 
36% 

26/72 

*64% 

11/17 
  

p<0.05, $Mann-Whitney [steady state v/s painful crisis], p>0.05, Chi square, *Not significant.  
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Table 3. Age [Mean+SD], vWF: Ag, vWF: CBA, FVIII: C, Thrombospondin [TSP 1 and TSP 2] levels [Median, IQ range] in the SCD 

patients cohort group 1[>4 VOC’s /yr.] and group 2 [<4 VOC’s/yr.]. 

SCD patients  

[n=89] 

Group 1 

[n=16] 

Group 2 

[n=73] 

Group 1-   “O” group 

[n=10] 

Group 2 -  “O” Group   

[n=38] 

Age, yrs.,       

Mean + SD 

23.19 

+ 5.05 

23.9 

+ 6.5 

24.6 

+ 5.5 

22 

19-26.5 

vWF:Ag, iu/mL, Median 

Interquartile Range 

1.14 

0.8-1.6 

1.14$ 

0.87-1.67 

1.15 

0.78-2.01 

1.15 

0.87-1.5 

vWF:CBA, iu/mL, Median 

Interquartile Range 

1.4 

0.9-1.9 

1.4$ 

1.04-1.68 

1.26 

0.88-1.93 

1.3 

0.9-1.5 

FVIII:C, iu/mL, Median 

Interquartile Range 

1.15 

0.9-1.37 

1.3$ 

0.96-1.68 

1.23 

1.07-1.4 

1.3 

1.0-1.59 

TSP 1,iu/mL, Median 

Interquartile Range 

27.2 

20.9-31.2 

23.4$ 

15-49.4 

41.4$$ 

17.8-74.2 

30.8$$ 

21.8-46 

TSP 2,iu/mL, Median 

Interquartile Range 

877 

789-1030 

920 

808-1035 

924$$ 

828-1136 

953$ 

849-1096 

% SCD patients with “O” Blood 

Group 
 62.5% 52%*  

HbF levels,% in SCD patients on HU 

Mean + SD 

6.1 

+ 6.5 

6.6$ 

+ 5.7 
  

% SCD patients on HU 
68.75% 

11/16 

36%* 

26/72 
  

p>0.05, Chi square, *Not significant. $p>0.05, Mann-Whitney [Group 1 v/s Group 2], $$ p<0.05, Mann-Whitney [O v/s non-O blood group 

patients] 

 

serum TSP 1 and TSP 2 were higher in the “O” 

blood group subsets in both groups 1 and 2 

[p<0.05, Mann-Whitney U test]. Furthermore, 

there was an over representation of “O” blood 

group in Group 1 SCD patients (62.5%), but this 

was not statistically significant. However, the 

number of SCD patients on HU were significantly 

higher in the group 1 (68.75%), although the HbF 

levels were similar.  

 

Discussion. This study documents that both serum 

TSP 1 and serum TSP 2 are significantly elevated 

in SCD patients with VOC’s. Several investigators 

have reported that TSP levels are elevated in SCD 

patients in crisis
35-37

. Browne et al.
 35

 have 

reported in 1996 that plasma TSP 1 was elevated 

in SCD patients. They found that TSP 1 levels 

were similar in normal controls and SCD patients 

in steady-state, whereas these levels were 

significantly elevated in SCD patients with 

VOC’s. They also had further documented that the 

source of the raised TSP 1 in plasma was platelets, 

as platelet TSP 1 levels were found depressed with 

a corresponding elevation of plasma TSP levels in 

these SCD patients. They, therefore, concluded 

that low platelet TSP levels coupled with elevated 

plasma TSP levels were linked to VOC’s since 

these levels normalized in steady state and became 

comparable to levels seen in normal controls. 

Further, there was no correlation with platelet 

numbers and plasma TSP levels between steady 

state and the vaso-occlusive crisis in these 

patients. It, therefore, appears that the increased 

presence of markers of platelet activation such as 

p-selectin, platelet factor-4, beta thromboglobulin, 

soluble CD40 and platelet microparticles seen 

during VOC’s is representative of the underlying 

inflammatory state
38-42

.  

In this study, we observed that “O” blood group 

was overrepresented in SCD patients presenting 

with VOC’s, in comparison to the non-O blood 

group SCD patients. This was documented both in 

patients who were frequently admitted with 

VOC’s in group 1 (62.5%) as well as in patients 

who were enrolled in the study as in-patients 

(65%). Since it is known that vWF levels are 

lower in “O” blood group than non-O blood group 

subjects, we investigated whether vWF levels 

would play a contributory role in the occurrence of 

VOC’s in SCD patients. We observed that there 

was an inverse relationship between TSP levels 

and vWF and FVIII: C during active VOC’s, with 

the TSP1 and TSP2 levels being significantly 

elevated (Tables 1 and 2). Interpreting this 

observation in the light experimental evidence that 

sickle erythrocyte adhesion to immobilized TSP is 

inhibited by vWF, implies that sickle RBC 

adhesion is significantly influenced by the relative 

concentrations of TSP and vWF in the vascular 

wall
25

. Thus in “O” blood group SCD patients 

with a relatively lower basal vWF levels, the 

relative rise in the TSP levels could promote 

VOC’s more easily in comparison to the non-O 

blood group SCD patients. 
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Interestingly, ABO blood group has been 

shown to have a profound influence on the 

incidence of VTE, with plasma levels of vWF, 

being approximately 25% higher in individuals 

who have non-O blood group rather than “O” 

blood group.
33, 34

 Several case-control studies have 

consistently shown that non-O blood group 

patients have an increased risk for venous 

thrombosis
27-32

 with the AB blood group having a 

two-fold higher risk for thrombotic vascular 

disease.
30

  

Thus, the important point this paper raises is 

that although “O” blood group SCD patients are at 

a lower risk for VTE, they were actually 

overrepresented amongst SCD patient with 

VOC’s. This implies that mechanistic differences 

in pathways leading to VTE and VOC’s in SCD 

patients are likely to explain the dissimilarities 

seen with different underlying risk factors. In fact, 

VOC’s, as opposed to VTE's, is an inflammatory 

condition with the clinical manifestations and 

complications reflecting an interplay of several 

biomarkers.
38-50

  

The up-regulation of P-selectin in endothelial 

cells and platelets contributes to the cell-cell 

interactions that are involved in the pathogenesis 

of VOC’s and sickle cell-related pain. Ataga et 

al
43

, recently demonstrated that therapy with 

crizanlizumab, an antibody against P-selectin, 

resulted in a significantly lower rate of VOC’s as 

compared to placebo. In transgenic humanized 

SCD mice, Bennewitz et. al,
44

 recently 

demonstrated that microembolism of precapillary 

pulmonary arteriolar vessels by neutrophil-platelet 

aggregates, causing acute chest syndrome cleared 

following infusion of platelet P-selectin antibody. 

Usefulness of both these therapeutic approaches 

demonstrates the role of selectin as an important 

adhesive protein that plays a significant role in the 

pathogenesis of sickle VOC’s. 

Selectin is important in the activation of 

platelets, which is another mechanistic pathway 

active in sickle VOC’s. Al Najjar et. al,
45

 

demonstrated that patients with SCD have 

increased expression of E-selectin and P-selectin 

and play an important role in the pathogenesis of 

VOC’s. Annarapu et. al,
46

 demonstrated that free 

plasma hemoglobin present following 

intravascular hemolysis in SCD binds to 

glycoprotein 1bα, inducing the activation of 

platelets. Wu et. al,
47

 in a double blind, 

randomized study showed that prasugrel, a third-

generation thienopyridine, was able to decrease 

platelet activation biomarkers and reduce sickle-

cell VOC pain as compared to placebo. Although 

it is believed that platelets mediate intercellular 

adhesion during sickle cell VOC’s, Heeney et al,
48

 

in an international multicenter study utilizing 

prasugrel, failed to show a statistically significant 

reduction in VOC’s, although there was a trend to 

show a reduction in the VOC pain.  

Low molecular weight heparins (LMWH) have 

been used to control the hypercoagulability 

associated with sickle cell VOC’s.
49-50

 In a 

randomized study using Tinzaparin, Qari et. al,
49

 

showed reduced severity and duration of acute 

crisis in sickle cell anemia. However, well-

designed placebo-controlled studies with different 

LMWH, and enrolling participants with different 

genotypes of sickle cell disease are lacking.
50

 

Telen et al.
51

 demonstrated that sevuparin, a 

heparin-derived polysaccharide, reduced sickle 

cell related VOC’s. The efficacy of sevuparin is 

believed to be due to its anti-adhesive properties, 

as it binds to P-and L-selectins, TSP, fibronectin, 

and VWF, all of which are involved in the sickle 

cell VOC’s.  

Lastly, it has also been reported that a high 

level of extracellular hemoglobin plays an 

important role in SCD patients since nitric oxide 

(NO) quenching mechanism are compromised.
52,53

 

The free hemoglobin binds not only to vWF 

multimers but also with ADAMTS-13, leading to 

an acquired ADAMTS-13 deficiency, blocking 

appropriate proteolysis of vWF, causing the 

accumulation of ultra-large vWF multimers. 

However, using real-time fluorescence intravital 

microscopy, Barazia et al
54

 showed that plasma 

nitric oxide levels could be normalized by using 

hydroxyurea therapy. 

Overall, therefore, it is quite apparent that SCD 

is actually a well-recognized state of chronic 

indolent inflammation and there indeed exist 

several lines of evidence demonstrating the 

mechanistic differences in VOC pathways as 

against VTE pathways. Adhesive proteins like 

selectins and TSP decelerate sickle red cells and 

the platelet-leukocytes interactions in the 

circulation, facilitating endothelial adhesion and 

other cell-cell interactions, ultimately leading to 

vascular occlusion in sickle VOC’s. However, the 

occurrence of VTE depends on its predisposing 

risk factors.  

http://www.mjhid.org/
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The major drawback of this study is the small 

number of evaluable patients. Although the study 

prospectively enrolled consecutive patients for 

almost 2 years, we were able to get only a total of 

89 SCD patients. Nevertheless, our data are 

valuable as they show observations in an ethnic 

SCD population that have not been reported 

before. 

 

Conclusions. Abnormal adhesive interactions 

between sickle erythrocytes and vascular 

endothelial cells and/or subendothelial matrix play 

a significant role in the initiation of sickle VOC’s. 

Selectins, TSP and vWF are important mediators 

of the adhesive interactions between sickle 

erythrocytes and the blood vessel wall. Our study 

showed an inverse relation between TSP and vWF 

levels, in blood group “O” SCD patients with 

elevated TSP levels during active VOC”s. 
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