
 

www.mjhid.org Mediterr J Hematol Infect Dis 2018; 10; e2018014                                                         Pag. 1 / 16 

 

Mediterranean Journal of Hematology and Infectious Diseases 
 

Review Article  
 

Elotuzumab for the Treatment of Relapsed or Refractory Multiple Myeloma, with 

Special Reference to its Modes of Action and SLAMF7 Signaling 
 

Masafumi Taniwaki1,2, Mihoko Yoshida2, Yosuke Matsumoto2, Kazuho Shimura2, Junya Kuroda3 and Hiroto 

Kaneko2. 

 
1 Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Graduate School of Medical 

Science, Japan. 
2 Department of Hematology and Laboratory Medicine, General Incorporated Association Aiseikai Yamashina Hospital, Japan. 
3 Department of Hematology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan. 

 

Competing interests: The authors have declared that no competing interests exist. 

 

Abstract. Elotuzumab, targeting signaling lymphocytic activation molecule family 7 (SLAMF7), 

has been approved in combination with lenalidomide and dexamethasone (ELd) for 

relapsed/refractory multiple myeloma (MM) based on the findings of the phase III randomized 

trial ELOQUENT-2 (NCT01239797). Four-year follow-up analyses of ELOQUENT-2 have 

demonstrated that progression-free survival was 21% in ELd versus 14% in Ld. Elotuzumab 

binds a unique epitope on the membrane IgC2 domain of SLAMF7, exhibiting a dual mechanism 

of action: natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) 

and enhancement of NK cell activity. The ADCC is mediated through engagement between Fc 

portion of elotuzumab and FcRIIIa/CD16 on NK cells. Enhanced NK cell cytotoxicity results 

from phosphorylation of the immunoreceptor tyrosine-based switch motif (ITSM) that is 

induced via elotuzumab binding and recruits the SLAM-associated adaptor protein EAT-2. The 

coupling of EAT-2 to the phospholipase C enzymesSH2 domain leads to enhanced Ca2+ influx 

and MAPK/Erk pathway activation, resulting in granule polarization and enhanced exocytosis in 

NK cells. Elotuzumab does not stimulate the proliferation of MM cells due to a lack of EAT-2. 

The inhibitory effects of elotuzumab on MM cell growth are not induced by the lack of CD45, 

even though SHP-2, SHP-1, SHIP-1, and Csk may be recruited to phosphorylated ITSM of 

SLAMF7. ELd improves PFS in patients with high-risk cytogenetics, i.e. t(4;14), del(17p), and 

1q21 gain/amplification. Since the immune state is paralytic in advanced MM, the efficacy of 

ELd with minimal toxicity may bring forward for consideration of its use in the early stages of 

the disease. 
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Introduction. Multiple myeloma (MM) is the 

second most common hematological malignancy 

in Western countries with 62 % of patients being 

older than 65 years at the time of diagnosis.1,2 

According to the National Cancer Center in Japan, 

the number of patients with MM was 6697 in 
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2013, and that of deaths was 4129 in 2015; the 

five-year relative survival rate was 36.4% for MM 

patients diagnosed between 2000 to 2008.3 

Regarding morbidity in 2015 based on age and 

gender, the proportions of patients older than 65 

years were 90.1% for females and 87.9% for 

males, while those of patients older than 75 years 

were 69.1% for females and 60.9% for males.3 

Due to its high incidence in the elderly and its 

incurability, there is an urgent need to develop 

effective and less toxic combination therapies for 

unfit or frail patients with MM.  

The treatment outcomes of MM have 

significantly improved in the last decade or two 

due to the success of molecular targeting agents 

including thalidomide, lenalidomide, and 

bortezomib.4-7 According to the findings of a 

number of clinical trials, triplet induction therapy 

containing proteasome inhibitors (PIs) and 

immunomodulatory drugs (IMiDs) is the standard 

care for fit patients, whereas doublet induction 

therapy containing PIs or IMiD is administered to 

frail patients. In addition to the development of 

second- and third-generation PIs and IMiDs, 

monoclonal antibodies (mAb) will open a new era 

of MM treatments that selectively eliminate the 

malignant clone and reverse tumor-mediated 

immune paralysis.8-12 Elotuzumab is the first 

therapeutic mAb targeting SLAMF7 that has been 

approved for relapsed or refractory (RR) MM. It 

induces natural killer (NK) cell-mediated 

antibody-dependent cellular cytotoxicity (ADCC) 

and exerts stimulatory effects on immune cells, 

particularly NK cells, which are mediated by the 

engagement of elotuzumab with SLAMF7.13,14 

Clinically, the combination of elotuzumab with 

lenalidomide and dexamethasone (ELd) is a 

promising treatment for frail patients regardless of 

the cytogenetic risk.8 

In this review, we will focus on the efficacy and 

safety of elotuzumab for the treatment of RRMM. 

We will also discuss the biological characteristics 

of SLAMF7 and SLAM-associated protein (SAP), 

their expression and possible functions in normal 

cells and hematological malignancies, as well as 

the modes of action of elotuzumab. We will then 

propose optimal use and future directions for 

elotuzumab in the treatment of MM. 

 

Elotuzumab for the Treatment of RRMM.  

Efficacy and safety of elotuzumab in combination 

with lenalidomide and dexamethasone. 

Elotuzumab was approved in combination with 

lenalidomide and dexamethasone (Ld) for patients 

with RRMM based on the findings of the phase 

III, randomized, open-label, multicenter trial, 

ELOQUENT-2 (NCT01239797).8 In 

ELOQUENT-2, the efficacy of elotuzumab 

combined with Ld (ELd) was evaluated for 

patients with RRMM who previously received one 

to three regimens. ELOQUENT-1 is still ongoing 

for patients with newly diagnosed MM (NDMM). 

ELOQUENT-2, in which 646 patients were 

randomized into ELd or Ld, demonstrated 

significant increase in overall response rate (ORR) 

and median PFS in ELd (Table 1).8 Progression-

free survival (PFS) has significantly improved in 

patients older than 75 years, particularly those 

with refractory disease and high-risk cytogenetic 

abnormalities (CA), i.e. t(4;14), del(17p), and 

1q21 gain/amplification. A subanalysis of the 

Japanese population from ELOQUENT-2 revealed 

similar outcomes to the global study as well as to 

the Japanese phase I study; ORR were 84% in ELd 

vs 86% in Ld, and PFS rates at two years were 

48% in ELd vs 18% in Ld.15,16 A three-year 

follow-up and post-hoc analyses of ELOQUENT-

2 recently confirmed that ELd provided a durable 

improvement in efficacy; ORR were 79% in ELd 

and 66% in Ld.17 ELd reduced the risk of disease 

progression/death by 27% versus Ld. Interim 

overall survival (OS) at 3 years was 60% with ELd 

versus 53% with Ld. Serum M-protein dynamic 

modelling showed slower tumor regrowth with 

ELd.17 An extended four-year follow-up of 

ELOQUENT-2 also demonstrated a sustained 

improvement in PFS in ELd versus Ld (21% vs 

14%).18 Patients with ≥ very good partial response 

(VGPR) had the greatest reduction (35%) in risk 

of progression/death. Median OS was 48% in ELd 

versus 40% in Ld.18 These results further support 

the durable efficacy of ELd.  

The safety, tolerability, and pharmacokinetics 

of intravenous elotuzumab have been assessed in a 

Phase I study of dose-escalation monotherapy at 

10–20 mg/kg, demonstrating no maximum 

tolerated dose and modest activity with a best 

response of stable disease (SD).19 The other two 

Phase I or Phase I/II studies also reported that the 

safety and tolerability of elotuzumab in 

combination with bortezomib or lenalidomide 

were acceptable.20-22 Severe adverse events (AEs) 

in ELOQUENT-2 were 65% in ELd versus 57% in 

Ld; the most common grade 3/4 hematological 
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AEs in ELd vs Ld were lymphocytopenia (77% vs 

49%) followed by neutropenia (34% vs 44%), 

thrombocytopenia (19% vs 20%), and anemia 

(19% vs 21%).8 Grade 3/4 hematological AEs, 

except for lymphocytopenia, were less frequent 

with ELd than with Ld, which may be of particular 

benefit for frail elderly patients. Common non-

hematological grade 3/4 AEs were fatigue (8% in 

both arms), diarrhea (5% in ELd vs 4% in Ld), and 

pyrexia (5% and 3% in both arms). 

Lymphocytopenia may develop as a result of the 

migration of peripheral lymphocytes including NK 

cells into the involved tissue sites.19 Infusion 

reactions (IRs) appearing as pyrexia, chills, and 

hypertension were very limited when compared 

with daratumumab, observed in 10% of ELd 

versus 45.3-50% of daratumumab-containing 

regimens.9-11 Premedication with antihistamines, 

acetaminophen, and dexamethasone have 

successfully prevented IRs, and now are standard 

of care as part of the treatment with this antibody 

treatment. A phase II study demonstrated that a 1-

hour infusion of elotuzumab provided convenient 

alternative dosing.23 

 

Elotuzumab in combination with bortezomib or 

thalidomide. The efficacy of elotuzumab 

combined with bortezomib or thalidomide was 

also evaluated (Table 1).24,25 A randomized Phase 

II study of elotuzumab combined with bortezomib 

and dexamethasone (EBd) versus bortezomib and 

dexamethasone (Bd), in which 152 patients with 

RRMM were randomized into EBd or Bd, has 

demonstrated slight increase in ORR and median 

PFS in EBd.24 Grade 3/4 AEs were reported in 53 

patients (71%) with EBd versus 45 patients (69%) 

with Bd; the most common grade 3 or higher AEs 

of EBd vs Bd were infections (21% vs 13%) and 

thrombocytopenia (9% vs 17%).24 Grade 3/4 

peripheral neuropathy (9% vs 12%), paresthesia 

(0% vs 5%), and thrombocytopenia were slightly 

less frequent in EBd than in Bd.24 Grade 1/2 IRs 

were observed in 5% of EBd; there were no grade 

3 or higher IRs.  

The efficacy of 10 mg/kg elotuzumab combined 

with 50-200 mg thalidomide and 40 mg 

dexamethasone (ETd) (with or without 50 mg 

cyclophosphamide), was also evaluated in a Phase 

II single-arm study with minimal additional 

toxicity.25 IRs were observed in 15% of ETd. This 

clinical trial showed ORR of 38% in 40 RRMM 

patients with a median of three prior regimens 

including bortezomib (98%) and lenalidomide 

(73%); median PFS and OS were 3.9 months and 

16.3 months, respectively.25 These findings 

suggest that the combination of elotuzumab with 

bortezomib or thalidomide has potential as 

treatment option for patients with RRMM. 
 

Table 1. Antibody-containing novel combination regimens for RRMM. 

Regimen Phase N 
≧PR 

(%) 

≧VGPR 

(%) 

≧CR 

(%) 

Median PFS 

(mo.) 

References 

(Number) 

Elotuzumab+Ld vs Ld III 321 vs 

325 

78.5 vs 

65.5 

31 vs 29 4 vs 7 19.4 vs 14.9 Lonial S et al., 

2015 (8) 

Elotudumab+Bd vs Bd II 77 vs 

75 

65 vs 

63 

37 vs 27 4 vs 4 9.7 vs 6.9 Jakubowiak A et 

al., 2016 (24)  

Elotudumab+Td II 40 38 18 8 3.9 Mateos MV et al., 

2016 (25) 

Daratumumab+Bd vs Bd III 251 vs 

247 

82.9 vs 

63.2 

59.2 vs 

29.1 

19.2 vs 

9.0 

60.7% vs 26.9% 

(at 12-mo) 

Palumbo A et al., 

2016 (9) 

Daratumumab+Ld vs Ld III 286 vs 

283 

92.9 vs 

76.4 

75.8 vs 

44.2 

43.1 vs 

19.2 

83.2% vs 60.1% 

(at 12-mo) 

Dimopoulos MA 
et al., 2016 (10) 

Daratumumab+Pd Ib 103 60 42 17 8.8 

(at a median follow-

up of 13.1 mo.) 

 Chari A et al., 

2017 (11) 

Pembrolizumab+Pd II 48 60 27 8 17.4 

(at a median follow-

up of 15.8 mo.) 

Badros A et al., 

2017 (12) 

Rd, lenalidomide and dexamethazone; Bd, bortezomib and dexamethasone; Td, thalidomide and dexamethasone; Pd, pomalidomide and 

dexamethasone. 
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Biological Characteristics of SLAMF7 and its 

Adaptor Proteins. 

Biological characteristics of SLAMF receptors. 

SLAMF7 is one of the nine SLAMF receptors 

(SLAMF1-9) belonging to the CD2 subset of the 

immunoglobulin superfamily. It was originally 

identified as CS1 (CD2 subunit 1) by a subtractive 

hybridization between naïve B cell cDNA and that 

of memory B cells and plasma cells.13 Molecular 

cloning revealed that CS1 is a novel human NK 

cell receptor.26 SLAMF7 may also play a growth-

promoting role and be involved in the autocrine 

expression of cytokines in normal B cells,27 

whereas its function in normal plasma cells 

currently remains unknown.  

SLAMF receptors are type I transmembrane 

glycoproteins, except a 

glycosylphosphatidylinositol-anchored protein 

SLAMF2, which is widely expressed in 

hematopoietic cells but not in other tissues (Table 

2). The genes encoding SLAMF receptors are 

reported to be clustered within an approximately 

350-kb region at 1q23.3.28,29 Our fluorescence in 

situ hybridization (FISH) study assigned SLAMF7 

to 1q21.3 using the BAC clone RP11-404F10 

containing SLAMF2, SLAMF7, and SLAMF3 

(Sakamoto N, Taniwaki M et al., unpublished) 

(Figures 1A and 1B). SLAMF7 is also included in 

the amplicon of chromosome 1q 

gain/amplification, which is a high-risk CA 

frequently detected in RRMM (Sakamoto N, 

Taniwaki M et al., unpublished) (Figures 1C and 

1D).  

SLAMF receptors are structurally characterized 

by distal Ig variable-like (IgV) and proximal C2-

like (IgC2) domains within an extracellular portion 

and one or more immunoreceptor tyrosine-based 

switch motifs (ITSMs) within the cytoplasmic 

portion. The exception is that SLAMF3 has 

duplicated IgV-IgC2 sequences, and SLAMF8 and 

SLAMF9 lack tyrosine motifs.28,30,31 SLAMF 

receptors 1, 3, 5 to 7, and 9, are “self-ligands” that 

recognize the same receptor molecule on another 

cell as a ligand; SLAMF2 and SLAMF4 are “co-

ligands” that recognize each other.27,28,32 

Interactions between SLAMF receptors occur at 

their IgV domains between identical or different 

types of hematopoietic cells. The engagement of 

SLAMF receptors mediates regulatory effects on 

immune cells in the presence of the SLAM-

associated protein (SAP) family of adaptors.26,33,34 

Two SAP family adaptors have been identified in 

humans: SAP (SH2D1A) and EWS-Fli1-activated 

transcript-2 (EAT-2, SH2D1B), which are 

intracellular proteins containing the Src 

homology2 (SH2) domain devoid of enzymatic
 

Table 2. Cytogenetic abnormalities valuable to predict prognosis of MM with candidate genes. 

Cytogenetic findings Frequency (%) Band        Candidate genes Prognosis 

Primary changes 
     

IGH translocation 45-55 
    

t(11;14) 15-20 11q13 CCND1 MYEOV Good 

t(4;14) 15 4p16 FGFR3 MMSET Poor 

t(14;16) 5-10 16q23 MAF WWOX Poor 

t(14;20) 1-2 20q11 MAFB 
 

Poor 

t(8;14), t(8;22) 1 8q24 MYC PVT1 Poor 

Hyperdiploidy 45-55 
   

Good 

Secondary changes 
     

8q24 translocation 13-22 8q24 MYC PVT1 Poor 

8q24.1 gain 15 8q24.1 MYC PVT1 Unknown 

del(13q)/-13 50 
13q14 RB 

 
Poor by 

metaphase 

cytogenetics 13q13 NBEA (BCL8B)  

del(17p) 10-15 17p13 TP53 Poor 

1q21 gain/amplification 30-40 1q21-23 
PDZK1, CKS1B, BCL9, MUC1, RAB25, 

FCRL4 (IRTA1), FCRL5 (IRTA2), SLAMF7  
Poor 

MYEOV, Myeloma-overexpressed; MMSET, multiple myeloma SET domain; WWOX, WW domain containing oxidoreductase; PVT1, 

plasmacytoma variant translocation 1; NBEA, neurobeachin; PDZK1, PDZ domain containing 1; CKS1B, cyclin-dependent kinases 

regulatory subunit 1; MUC1, mucin 1, cell surface associated; RAB25, RAB25, member RAS oncogene family; FCRL, Fc receptor-like 

protein gene; IRTA, immune receptor translocation-associated protein; SLAMF7, signaling lymphocyte activation molecule family 7. 
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Figure 1. Fluorescence in situ hybridization mapping of SLAMF7 gene on normal metaphase and MM cells (Sakamoto N, Taniwaki M 

et al., unpublished). FISH is performed as described as previously.98  (A) Representative mapping finding of SLAMF7 gene on a partial 

metaphase cell using BAC clone RP11-404F10 containing SLAMF2, SLAMF7, and SLAMF3. (B) An enlarged view of chromosomes 1 

shown in (A). SLAMF7 gene is assigned to 1q21.3 in our FISH study, although reportedly to be at the chromosomal band 1q23.3. (C) (D) 

Amplification of SLAMF7 gene in a metaphase spread and interphase nuclei obtained from a MM patient harboring pseudodiploid karyotype 

with 1q gain.  

 

activity.28,31,35 Although most SLAMF receptors 

bind SAP and EAT-2, SLAMF7 is reported to be 

functionally controlled by EAT-2 only.33,36 

However, RNA interference experiments have 

demonstrated that SLAMF7 may interact with 

SAP when the concentration of SAP is 

significantly higher than that of EAT-2 in cells.37 

Hence, the selective binding of SLAMF7 to EAT-

2 is due to its greater affinity to EAT-2 than SAP 

by nearly two orders of magnitude.37 Moreover, a 

recent study reported that SLAMF7 interacted 

with integrin Mac-1 instead of SAP adaptors 

utilizing signals involving immunoreceptor 

tyrosine-based activation motifs (ITAMs), which 

induced the promotion of phagocytosis.38 Further 

studies are needed in order to elucidate the exact 

role of SLAMF7 in myeloma cell 

pathophysiology.  

SLAM-associated adaptor proteins and 

downstream signal transduction. SLAMF 

functions as an either inhibitory or activating 

receptor depending on the availability of the SAP-

related adaptor proteins, SAP and EAT-2. SAP is 

expressed in T, NK, NKT, and germinal center B 

cells. SAP expression has been reported in some 

Epstein-Barr virus (EBV)-transformed B cells, 

Hodgkin’s lymphoma, and angioimmunoblastic T-

cell lymphoma.39-41 EAT-2 is expressed in NK 

cells and a range of antigen-presenting cells 

including monocytes.42,43 When the SLAMF 

receptor is engaged, tyrosine (Y) 281 located in 

ITSMs is phosphorylated, recruiting SAP or EAT-

2.28,32 Through the SH2 domain, SAP or EAT-2 

binds SLAMF at the phosphorylated ITSMs with 

overlapping specificities for activating and 

inhibitory binding partners. SAP contains an

http://www.mjhid.org/
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Figure 2. Structure and function of SLAMF receptor in an immune synapse. The SLAMF receptors are structurally characterized by 

IgV and IgC2 domains within an extracellular portion and one or more ITSMs, depicted as a closed rectangle, within the cytoplasmic 

portion. The mostly homophilic interactions between SLAMF receptors result in their costimulatory effects on TCR/CD3 complex signaling 

pathway. When the SLAMF receptor is engaged by its ligand, cytoplasmic domain ITSMs with tyrosine-based motifs undergo 

phosphorylation, recruiting adaptors proteins, SAP or EAT-2. SAP can then recruit the Src family protein tyrosine kinase Fyn or Lck, which 

is important for activation via SLAM family receptors. The coupling of EAT-2 carboxyl-terminal tail to the PLC-γ SH2 domains leads to an 

additional activation pathway. ITSM-like motif (non-ITSM) depicted as an unfilled rectangle does not bind SAP or EAT-2. SAP is mostly 

expressed in T cells, while EAT-2 is primarily expressed in antigen-presenting cells. 

 

arginine-based motif in the SH domain, which 

mediates binding to the Src family protein Fyn, 

thereby stabilizing immune synapses (Figure 2).44 

SAP also enhances adhesion between NK and 

target cells. On the other hand, EAT-2 controls 

NK cell function through the phospholipase C 

enzymes (PLC-), Ca2+ fluxes, and the MAPK/Erk 

pathway, leading to granule polarization and the 

exocytosis of cytotoxic granules toward target 

cells (Figure 3).45 SAP and EAT-2 both prevent 

SLAMF receptors from interacting with inhibitory 

effectors such as SH2-domain-containing tyrosine 

phosphatase (SHP)-2, SHP-1, SH2 domain-

containing 5’ inositol phosphatase (SHIP)-1, or C-

terminal Src kinase (Csk).36,41 Hence, SLAMF 

receptors become inhibitory in the absence of 

SAP-related adaptors, suppressing the function of 

activating NK-cell receptors such as CD16, 

natural-killer group-2 member-D (NKG2D), and 

DNAX accessory molecule-1 (DNAM-1).32 

The SAP gene located at Xq25 was identified 

as the causative gene altered in X-linked 

lymphoproliferative syndrome (XLP).46,47 

Germline mutations or deletions in SAP have been 

implicated in XLP, resulting in aberrant functions 

of SLAMF1.48,49 Aberrant functions of SLAMF1, 

2, and 6 caused by SAP mutations result in 

extreme sensitivity to EBV infection in patients 

with XLP. EBV-specific cytotoxic CD8+ T cells 

in XLP exhibit defects in the cytolysis of EBV-

infected B cells. They escape an apoptotic death, 

which results in the uncontrolled proliferation of B 

cells and T cells, thereby causing fulminant 

infectious mononucleosis (60%), lymphomas 

(30%), and dysgammaglobulinemia (30%).48,50 

 

Expression of SLAMF7 in Normal Cells, MM, 

and other Hematological Malignancies. 

Expression of SLAMF7 in normal cells and MM 

cells: SLAMF7 is expressed on NK cells, NKT 

cells, a subset of cytotoxic T-lymphocytes (CTLs) 

including CD8+ and CD4+ cells, mature dendritic 

cells (DCs), and activated B cells, regulating T- 

and B-cell functions. (Table 2).27,31-33,51,52 Normal 

plasma cells also highly express SLAMF7 at the 

mRNA and protein levels.13,14 SLAMF7 is not

http://www.mjhid.org/
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Figure 3. Effect of elotuzumab to NK, NKT, and MM cells. The primary mechanism of action of elotuzumab is NK cell-mediated ADCC 

against MM cells. Elotuzumab also directly activates NK and NKT cells, but not MM cells, by its engagement with SLAMF7. This effect 

results in phosphorylation of tyrosine 281 (Y281) located in ITSMs, thereby recruiting a SLAM-associated adaptor EAT-2. EAT-2 binds to 

the SH2 domains of PLC-, and leads to enhanced Ca2+ influx and MAPK/Erk pathway activation, finally resulting in granule polarization 

and enhanced exocytosis in NK cells. Tyrosine 261 (Y261), needed for the inhibitory function of mouse SLAMF7, is conserved in human 

SLAMF7.31 NKT cells are also activated via elotuzumab binding, resulting in the accelerated secretion of IL2 and TNF, which induces the 

cytotoxicity of NK cells against MM cells.64 Elotuzumab binds to the proximal IgC2 domain of SLAMF 7. 

 

expressed in resting B cells, monocytes, 

granulocytes, or hematopoietic stem cells.13,14,36 

On the other hand, SLAMF7 is highly expressed 

in neoplastic plasma cells from more than 95% of 

patients with MM, plasmacytoma,13,14 and plasma 

cell leukemia (PCL). It is also expressed in CD138 

purified plasma cells from patients with 

monoclonal gammopathy of undetermined 

significance (MGUS) and smoldering MM 

(SMM).14 There have been no studies describing 

the higher expression of SLAMF7 in MM than in 

normal plasma cells. Soluble SLAMF7 (sSLMF7) 

lacking transmembrane and cytoplasmic domains 

was detected in patients with MM, particularly at 

advanced stages, but not in those with MGUS or 

healthy individuals.14 The role of sSLMF7 in 

myeloma cell pathophysiology remains to be 

elucidated. 

Although SLAMF7 expression level in MM 

cells were independent of the cytogenetic subtypes 

of MM, one of the highest expression levels was 

found in t(4;14)-positive MM.13 A recent study 

demonstrated that the knockdown of SLAMF7 

induced cell cycle G1 arrest or apoptosis, and also 

reduced colony formation in t(4;14) MM cells.53 

Overexpressed SLAMF7 in t(4;14)-positive MM 

cell lines was down-regulated by MMSET 

shRNAs.53 These findings suggest a direct effect 

on the transcription of SLAMF7 by the MMSET 

protein. Although the mechanisms underlying the 

upregulation in plasma cells and MM cells 

currently remain unclear, a recent study 

demonstrated that SLAMF7 transcription was 

positively regulated by Blimp-1 (B lymphocyte-

induced maturation protein-1) in NK cells and B 

cells.54 Blimp-1 is a known transcriptional 

repressor in macrophages, NK cells, B cells, T 

cells, and skin epithelial cells. Plasma cell function 

is controlled by Blimp-1 through the regulation of 

immunoglobulin secretion and the unfolded 

protein response.55 

 

Expression of SLAMF7 in other hematological 

malignancies. Most of B-cell lymphomas 

including various histological subtypes and 

Hodgkin lymphoma do not express SLAMF7, as 
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assessed by immunohistochemistry (IHC). Neither 

acute myeloid leukemias nor lymphoblastic 

leukemias express SLAMF7.13 The SLAMF7 

protein was detected in 25% of peripheral T-cell 

lymphomas (PTCL) at a modest level using IHC. 

PTCL is a heterogeneous disease, but generally 

shows the CD4-positive phenotype. Using IHC, 

we identified various CD4+ Th subsets (Th1, Th2, 

Th17, and Treg) as possible normal counterparts 

of PTCL based on the expression of master 

regulators such as T-bet, GATA3, BCL6, RORγt, 

and FOXP3.56 These findings suggest that some 

functional subsets of CD4+ T cells expressing 

SLAMF7 exist. Recent studies demonstrated the 

clonal expansion of CD4+ CTLs expressing 

SLAMF7, granzyme A, IL-1β, and TGF-β1, at 

inflamed tissue sites of IgG4-related disease.52 

Although CD4+ CTLs may develop from naïve T 

(Th0) and various Th subsets, Th1 cells regulated 

by T-bet represent the majority of CD4+ CTLs 

secreting IFN-.57 CD4+ CTLs have been detected 

among peripheral blood lymphocytes under 

conditions of chronic viral infections and during 

antitumor responses.58,59 

 

Dual Immunotherapeutic Mechanism of 

Elotuzumab. 

Elotuzumab induces NK cell-mediated ADCC. 

Elotuzumab is a humanized immunoglobulin G1 

kappa (IgG1) monoclonal antibody, that binds a 

unique epitope on the IgC2 domain of 

SLAMF7.13,14 Human IgG1 elicits ADCC and 

complement-dependent cytotoxicity (CDC) 

activities. However, elotuzumab and the novel 

anti-SLAMF7 mAb PDL241 did not mediate 

CDC.60,61 Elotuzumab-induced ADCC is mediated 

through the engagement of its Fc portion with 

FcRIIIa/CD16 on NK cells.14,61 On the other 

hand, elotuzumab is unable to directly suppress the 

growth of MM cells. In MM cells lacking EAT-2, 

inhibitory molecules including SHP-2, SHP-1, 

SHIP-1, and Csk are recruited to the 

phosphorylated ITSMs of SLAMF7.62 However, 

inhibitory effects are not induced in MM cells, 

partly due to a lack of CD45. Elotuzumab also 

does not induce the proliferation of myeloma cells 

(Figure 3).45,62 

Preclinical studies demonstrated that 

elotuzumab strongly induced cytotoxicity in 

established MM cell lines and primary samples 

including bortezomib-resistant MM cells when 

incubated with peripheral blood mononuclear cells 

(PBMCs) or purified NK cells.63 This anti-

myeloma effect of elotuzumab was prevented 

when CD16 was inhibited.64 Elotuzumab alone 

does not affect the viability of MM cells without 

PBMCs or purified NK cells in vitro. SLAMF7 

may also potentiate interactions between NK and 

target MM cells through its homotypic 

engagement recognizing the distal epitope IgV.65 

NK cells activated by elotuzumab do not show 

cytotoxicity against autologous NK cells.14 In 

mice, the interaction between NK cells by the 

SLAMF7 engagement may enhance their 

function.36 

 

Elotuzumab directly stimulates NK cells. 

Elotuzumab directly enhances the cytotoxic 

activity of NK cells in addition to primarily 

inducing ADCC against MM cells, giving rise to a 

dual immunotherapeutic mechanism of 

action.13,14,63 NK cell activation is mediated by the 

SLAMF adaptor proteins EAT-2 and SAP, the 

cooperated expression of which promotes the 

cytotoxic activity of NK cells. NK cell 

cytotoxicity is also dependent on PLC1 and 

PLC2.66 SAP promotes and stabilizes adhesion 

between NK cells and target cells in a dual 

manner: one is by the coupling of SLAMF 

receptors to the protein tyrosine kinase Fyn, and 

the other is by preventing SLAMF receptors from 

coupling inhibitory signals involving SHIP and 

SHP-1.67,68 On the other hand, EAT-2 does not 

enhance adhesion between NK and target cells, but 

controls NK cell function through PLC, Ca2+ 

fluxes, and the MAPK/Erk pathway, leading to 

granule polarization and the exocytosis of 

cytotoxic granules toward target cells (Figure 3).45 

NKT cells are also activated via elotuzumab 

binding, resulting in the accelerated secretion of 

IL2 and TNF, which induces the cytotoxicity of 

NK cells against MM cells (Figure 3).64 While 

most SLAMF receptors bind SAP and EAT-2,35 

SLAMF7 is functionally controlled by EAT-2, not 

SAP.34,35  

A previous study showed that lenalidomide 

augmented elotuzumab-induced ADCC against 

MM cells in vitro.14,64 The enhanced NK cell 

function was associated with the up-regulation of 

IL-2Rα expression, IL-2 production by 

CD3+CD56+ lymphocytes including NKT cells, 

and TNFα production.64 Augmentations in NK-

cell cytotoxic activity were also demonstrated with 

pomalidomide.69,70 Low-dose bortezomib71 and 
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carfilzomib72 also augmented NK-cell cytotoxic 

activity against MM cells. This effect was 

associated with the enhanced expression of the 

activating or co-activating molecules of NK cells 

including MHC class I polypeptide-related 

sequence A (MICA), NKG2D, and DNAM-1 

ligands (PVR and Nectin-2). These findings may 

provide the rationale for combining these agents 

with elotuzumab. However, further studies are 

needed in order to delineate which and how 

immune cells other than NK cells are modulated in 

their function by elotuzumab. 

 

Quantity and quality of NK cells in MM. The 

quantity and quality of effector cells including NK 

cells are essential for ADCC activity. Peripheral 

blood (PB) NK cell counts from MM patients 

increased or showed no changes in the earlier 

stages and decreased in the advanced stages.73-75 

Patients with MGUS also showed no changes in 

PB NK cell counts form those of the 

controls.74,76,77 On the other hand, NK cell counts 

in bone marrow (BM) from MM patients were 

reported to increase.73,78 However, the functions of 

NK cells differ among their subsets. 

CD56brightCD16-/dim NK cells are mainly 

responsible for the production of cytokines, while 

CD56dimCD16+ NK cells are mainly responsible 

for cytotoxic activities.75 CD16+ subsets were 

decreased in MM patients.79 

Regarding the quality of NK cells in MM 

patients, previous studies suggested that they were 

dysfunctional and showed decreased or no 

cytotoxicity in advanced MM, while they 

remained functional in MGUS.79-83 NK cell 

dysfunction is often associated with the down-

regulated expression of activating molecules 

including natural cytotoxicity receptors, NKG2D, 

and SLAMF4 (2B4) in BM NK-cells.84 Other 

studies also demonstrated the down-regulated 

expression of SLAMF4 and DNAM-1 in NK cells, 

and this was associated with a reduction in NK 

cell cytotoxicity against MM.83,85 MM cells escape 

NK cell cytotoxicity due to the lack of a HLA 

Class I loss, the shedding of surface MICA, and 

circulating MICA, which result in the down-

regulation of NKG2D. NK cells from MM patients 

also express programmed death protein 1 (PD-1), 

which results in escape from immune 

surveillance.86,87 In mouse tumor models, an anti-

PD-1 antibody enhances elotuzumab efficacy due 

to the production of tumor-infiltrating NK and 

CD8+ T cell activity.88 These findings may provide 

the rationale for combination therapy of 

elotuzumab and PD-1 blockade. 

 

Response to elotuzumab and the polymorphism of 

FcRIIIa/CD16. The FcRIIIa/CD16 genotype 

may provide some guidance for the administration 

of elotuzumab to patients who are expected to 

have a favorable response. Since the allelic 

variation affects the affinity of FcRIIIa for IgG1 

antibodies, differential responses to mAb have 

been reported to correlate with specific 

polymorphisms.89,90 The presence of a valine (V) 

at position 158 of FcRIIIa is associated with 

high-affinity to the Fc portion of IgG1 mAb, in 

contrast to phenylalanine (F) with low affinity. 

The high-affinity “VV” genotype of FcRIIIa has 

been associated with enhanced ADCC in 

rituximab treatments for patients with follicular 

lymphoma.91,92 

 In a randomized phase II study of EBd 

versus Bd for RRMM, patients homozygous for 

the high-affinity FcRIIIa V allele (VV) showed 

longer survival than those who were homozygous 

for the low-affinity FcRIIIa F allele (FF).24 A 

subanalysis of PFS by the CD16a genotype 

showed no significant difference between VV and 

FF in ELOQUENT-2. A difference was noted 

between VV/VF and FF in the study of 

elotuzumab monotherapy, although the 

interpretation of this finding is limited by the small 

number of patients with each genotype.93 The 

incidence of the high-affinity VV allele is 59% in 

the Japanese population versus 17% in the 

populations of Western countries.24,94 In Japanese 

patients, the genetic FcRIIIa-V158F 

polymorphism may have a significant impact on 

myeloma cell killing by ADCC. 

 

Optimal use of ELd for the Treatment of 

RRMM. Three factors need to be considered in 

order to achieve better outcomes using ELd: risk 

of the disease, frailty of the patients, and the 

quantity and quality of effector cells. Prior to 

introducing elotuzumab, many patients were 

treated with lenalidomide-based regimens until 

disease progression as first-line therapy, and were 

lenalidomide refractory at the time of first relapse. 

Since elotuzumab is approved in combination with 

Ld for the treatment of RRMM, there are two 

possible conditions under which to administer 

elotuzumab: starting ELd as second-line later 
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treatment or adding elotuzumab to Ld ongoing as 

first-line or later treatment. In the case of second-

line or later treatment, patients with PR, VGPR, or 

CR using Ld may be the ideal candidates for the 

addition of elotuzumab. This is because PFS by 

tumor responses between the ELd and Ld groups 

was significantly better in patients who achieved 

PR or better than in patients with a minor response 

or SD in ELOQUENT-2.8 

According to the ELOQUENT-2 study, 

elotuzumab is beneficial for patients with high-risk 

CA including del(17p), 1q21 gain/amplification, 

and particularly t(4;14). A direct effect on 

SLAMF7 transcription by the MMSET protein has 

provided the rationale to use elotuzumab for 

t(4;14)-positive MM patients.53 Secondary CA 

may impact adversely on treatment outcomes and 

survival in both NDMM and RRMM regardless of 

the primary high-risk CA (Table 3). For example, 

t(11;14) is not necessarily associated with a good, 

but with a poor prognosis when identified 

concomitantly with a high-risk secondary CA, 

such as 1q21 gain/amplification and del(17p) 

(Figure 4).95 In the novel agent era, chromosomal 

rearrangements at 8q24 is also high-risk CA.96,97 

We previously detected 8q24 rearrangements 

involving MYC or PVT1 (plasmacytoma variant 

translocation 1) loci in 24% of patients with 

MM.98 

Taking the modes of action of elotuzumab into 

consideration, the counts and functions of immune 

cells, particularly NK cells are crucial as already 

mentioned. In this regard, the findings of Phase II 

and III trails in patients with SMM have been 

encouraging. Elotuzumab monotherapy may delay 

progression to MM in patients with SMM, 

resulting in favorable PFS, because most patients 

achieved the best overall response of SD or MR, 

with ≥MR in 29% including PR in 10%.99 Early 

treatments with Ld in patients with high-risk SMM 

provided a significant benefit over observations in 

terms of time to progression.100 Since elotuzumab 

is well tolerated with minimal toxicity, elderly or 

frail patients who are ineligible for PI/MiD-based 

triplet therapy or transplantation are suitable 

candidates for ELd treatment. Moreover, the 

addition of elotuzumab to bortezomib, 

lenalidomide, and dexamethasone (LBd) is 

feasible without major additive AEs beyond what 

is already known about LBd, as
 

Table 3. SLAM family receptors: their expression and interaction with adaptor proteins. 

SLAMF 

Receptors 

Ligands Expression  Interaction with Effectors 

Normal MM  SAP EAT-2 

SLAMF1 SLAMF1 

measles virus 

T, B, DCs, Mφ, Platelets +  + + Fyn, Lck, SHIP1, Dok1, 

PKCθ, Akt 

SLAMF2 SLAMF4 

CD2 

Lymphocytes, 

Immune cells, DCs, 

Endothelial cells 

++  − − Fyn, Lck 

SLAMF3 SLAMF3 T, B, NK, DCs, Mφ +++  + + Fyn, Lck, ERK, AP2, Grb2 

SLAMF4 SLAMF2 NK, NKT, D8+ T, DCs, 

Mφ, Eosinophils 

+  + + Fyn, Lck, LAT, PI3K, Vav1, 

SHIP1, cCbl, ERK, p38, 

SHP1, SHP2 

SLAMF5 SLAMF5 T, B, NK, DCs, Mφ, 

Granulocytes, Platelets, 

Mast cells, Eosinophils 

+  + + Fyn, Lck 

SLAMF6 SLAMF6 T, B, NK, DCs, 

Neutrophils 

++  + + Fyn, Lck, PLC-γ, PI3K, SHP1, 

cCbl, Vav1 

SLAMF7 SLAMF7 NK, NKT, T, Plasma 

cells, B, DCs, Mφ 

+++  − + Fyn, Lck, PLC-γ, Vav1, PI3K 

SLAMF8 SLAMF8 Granulocytes, Mφ, 

Monocytes, DCs 

unknown  − − unknown 

SLAMF9 unknown Immune cells unknown  − − unknown 

SAP, SLAM-associated protein; EAT-2, EWS-Fli1-activated transcript-2; T, T cells; B, B cells; NKT, natural killer-T cells; NK, natural 

killer cells; DCs, dendritic cells; Mφ, macrophages 
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Figure 4. Chromosomal abnormalities in a patient with t(11;14)-positive primary refractory PCL detected by multicolor spectral 

karyotyping (SKY) (Goto M, Taniwaki M, et al. unpublished). SKY is performed as described as previously.98 Arrows indicate a balanced 

translocation t(11;14)(q13;q32). Three secondary CA are detected in this patient: der(1)t(1;16)(q10;p10) indicated by an arrowhead, 

monsomy 13 (-13), and der(17)t(4;17)(?;p13) indicated by a double arrowhead. Unbalanced translocations, der(1)t(1;16)(q10;p10) and 

der(17)t(4;17)(?;p13), result in 1q gain and 17p deletion, respectively, which are high-risk secondary CA in MM (Goto M, Taniwaki M, et al. 

unpublished). 

 

demonstrated in SWOGS1211 trial.101 However, 

the efficacy of elotuzumab in combination with 

LBd needs to be studied. 

 

Conclusions. A number of molecular targeting 

agents are currently available for MM; therefore, 

risk stratification and frailty assessments are 

critical for their optimal combination. Secondary 

CA are effective biomarkers, and more than 50% 

of patients are unfit because they are older than 75 

years. However, even with the use of novel agents, 

MM remains incurable with recurrence and 

refractoriness to treatment, and frequently 

develops extramedullary disease and secondary 

plasma cell leukemia (sPCL) at the end stages of 

the disease. Although a number of clinical trials 

have attempted to achieve high tumor responses in 

RRMM using novel triplet therapy with second- 

and third-generation PIs and IMiDs, difficulties 

are associated with successfully treating 

extramedullary lesions and sPCL. Therefore, it is 

important not only to develop treatments with high 

tumor responses, but also to have early therapeutic 

interventions for MM. Moreover, 30-50% of MM 

patients are transplant-ineligible or unable to 

receive PI/IMiDs based triplets therapy.102,103 

Hence, elotuzumab is promising and beneficial for 

the treatment of frail patients with MM.  

The mechanisms of action of elotuzumab and 

the functional role of SLAMF7 in relation to 

pathophysiology of MM remain unclear. For 

example, what the signal transduction pathway of 

engaged SLAMF7 in MM cells is involved in is 

unknown, and which or how immune cells other 

than NK cells are implicated in killing MM cells 

has yet to be elucidated by elotuzumab. It will be 

beneficial for patients with RRMM to clarify 

whether elotuzumab has a marked impact on the 

recovery of immune paralysis in combination with 

other novel molecular targeting agents such as 

carfilzomib and pomalidomide. In order to address 

these questions, basic research is conducted to 

investigate the molecular mechanisms involving 

SLAMF receptors and SAP-related adaptors with 

their downstream molecules in the signal 

transduction pathway. 

The efficacy of ELd with minimal toxicity and 

the paralytic immune state in advanced MM may 

bring forward for consideration of early 

therapeutic intervention in patients with SMM. 

However, studies are needed in order to clarify 

whether ELd is effective for patients with SMM. 
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