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Abstract. Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating 

disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity 

and the multiplicity of pathophysiological targets, development of new therapeutic options is 

critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug 

for SCD.  

New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and 

(2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and 

gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling 

or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-

endothelial adhesive events; c) Anti-oxidant agents. 

This review highlights new therapeutic strategies in SCD and discusses future developments, 

research implications, and possible innovative clinical trials.  
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Introduction. Sickle cell disease (SCD) is a 

hemoglobinopathy which affects approximately 

100,000 individuals in the United States and almost 

20,000-25,000 subjects in Europe, mainly immigrants 

from endemic areas such as Sub-Saharan Africa to 

European countries.1-3  Estimates of the number of 

affected newborn in 2010 are of approximately 312,302 

subjects  with 75.5% being born in Africa.4 The 

invalidating impact of SCD on patient survival, quality 

of life and cost for health systems,2 requires the 

development of new therapeutic options to treat sickle 

cell related acute and chronic complications.   

SCD is caused by a point mutation in the β-globin 

gene resulting in the synthesis of pathological 

hemoglobin S (HbS). HbS displays peculiar biochemical 

characteristics, polymerizing when deoxygenated with 

associated reduction in cell ion and water content (cell 

dehydration), increased red cell density and further 

acceleration of HbS polymerization (Figure 1).5-7 

Pathophysiological studies have shown that dense, 

dehydrated red cells play a central role in acute and 

chronic clinical manifestations of SCD, in which 

intravascular sickling in capillaries and small vessels 

leads to vaso-occlusion and impaired blood flow with 

ischemic/reperfusion injury.5,8-10 In microcirculation, 

vaso-occlusive events (VOC) result from a complex and 

still partially known scenario, involving the interactions 

between different cell types, including dense red cells, 

reticulocytes, abnormally activated endothelial cells, 

leukocytes, platelets and plasma factors (Figure 1).5,9-13 

Acute VOCs have been associated with increased 

expression of pro-adhesion molecules such as vascular 

adhesion molecule-1 (VCAM-1), intracellular adhesion 

molecule-1 (ICAM-1) or selectins (Figure 1).5,9,11,12,14,15 

These molecules are important in recruitment and 

adhesion of both neutrophils and sickle red cells to the 

abnormally activated vascular endothelial surface.11,16 In 

addition,   the   presence   of   free   Hb   and   free   heme
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Figure 1. Schematic diagram of the mechanisms involved in the pathogenesis of acute sickle cell related vaso-occlusive events. These involve 

the adherence of sickle red blood cells (RBCs) or reticulocytes and neutrophils to the abnormally activated endothelial cells, with the 

participation of activated and phosphatidyl- Serine (PS)-rich platelets (PLTs), activation of the coagulation system, and activation of a cytokine 

storm. PS: Phosphatidyl-Serine; TSP: thrombospondine; vWF: von Willebrand factor; BCAM/LU: Lutheran blood group protein; ICAM-4: 

Landstein-Weiner (LW) blood group glycoprotein; MPs: microparticles; Mac1: β2 integrins (αMβ2 or CD11b/CD18); ESL-1: neutrophil E-

selectin ligand -1; Hb: hemoglobin; ROS: reactive oxygen species; iNKT: invariant natural killer T cells; ET-1: endothelin-1; NO: nitric oxide 

(modified from De Franceschi L et al. Seminars in Thrombosis, 37: 266; 2011).   

 

contribute to the local reduction of nitric oxide (NO) 

bioavailability, establishing an endovascular high pro-

oxidant and pro-inflammatory environment. This is 

associated with modulation of innate immunity and 

increased iNKT lymphocytes, increase levels of 

vascular active cytokines such as endothelin 1, 

combined with the final contribution of platelets (Figure 

1).5,9,14,17-20 

 

Hydroxyurea is the Gold- Standard Treatment for 

Sickle Cell Disease. Hydroxyurea or hydroxycarbamide 

(HU) is the key therapeutic tool for SCD approved by 

Food and Drug Administration (FDA) and European 

Medical Agency (EMEA). US and European guidelines 

highlighted that HU should be available for all SCD 

patients from pediatric to adult populations.21,22 

Studies in SCD show a multimodal action of HU, 

which (i) increases HbF production, resulting in delayed 

HbS polymerization; (ii) reduces hemolysis and increase 

NO availability targeting cGMP production; (iii) 

modulates endothelial activation and reduces neutrophil 

counts, contributing to the reduction of chronic 

inflammation (Figure 2).23-27 Long-term use of HU has 

been shown to be safe and well-tolerated in large cohorts 

of children and adults with SCD, reducing mortality and 

morbidity of both children and adult patients.21,28-31 

Indeed, HU reduces (i) the frequency of VOC and the 

rate of hospitalization; (ii) the incidence of ACS; (iii) the 

transfusion requirements; and (iv) the severity of 

dactilitis in SCD pediatric population.21,32-36 HU might 

also be used in combination with transfusion regimen in 

selected SCD population such as SCD children with 

progressive cerebrovascular disease in the absence of 

antigen- matched sibling donor.37 Furthermore, recent 

reports propose HU as acceptable alternative to chronic 

transfusion regimen in SCD patients with history of 

abnormalities at the transcranial doppler scan (TCD), 

used to screen for cerebrovascular disease in pediatric 

patients.38-40 This requires a close follow-up by TCD 

scan every 3 months, with the possibility to switch-back 

to chronic transfusion regimen if abnormal transcranial 

velocities are again documented.38-40 Noteworthy, 

increase reticulocyte count before HU treatment and 

high leukocyte count after HU have been identified as 

risk factor for reversion to abnormal TCD velocities in 

SCD pediatric patients. Thus, again chronic 

inflammation and vasculopathy seems to be key 

determinants of severe chronic complications in   

SCD.38-40 

Although HU should be available for all SCD subjects, 

the major limitation is the poor adherence of adults SCD 

patients to HU therapy. Different studies have identified 

multiple factors to be involved in reduced adherence of 

SCD patients to HU such as (i) chronicity of the 

treatment; (ii) socio-economic reasons; and (iii) 

adhesion barriers related to the transition from pediatric 

to adult care system.41-44 

The dissemination of the use of HU is particularly 

important in underdeveloped countries with high 

incidence of SCD such as in the sub-Saharan African 

areas.45 Recently, Opoka et al. reported safety of use for 

HU at the dosage of ~20 mg/Kg/d in African children 

from Uganda, a malaria endemic area (NOHARM study, 

NCT01976416).46 This study further supports the 

importance of HU as a front-line medical treatment for 

SCD patients all over the world.  Noteworthy, in 

geographical context where frequent hematologic 

monitoring is not available, Toya et al. have recently 

reported the beneficial effects of low dose HU (10 

mg/Kg/d) on SCD acute clinical manifestations in 

Nigerian patients.47 

 

Novel Therapeutic Approaches to Treat Sickle Cell 

Disease. In the last two decades, the availability of 
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Figure 2. Schematic diagram of multimodal therapeutic action of hydroxyurea (HU) in sickle cell disease.  ROS: reactive oxygen species; Hb: 

hemoglobin; NO: nitric oxide; HbS: sickle hemoglobin; HbF: fetal hemoglobin.  

 

mouse models for SCD has allowed both 

characterization of the pathogenesis of sickle cell related 

organ damage(s) and identification of pathophysiology-

based new therapeutic options in addition to 

HU.5,7,11,12,48-50 

As shown in Table 1, pathophysiology related novel 

therapies for SCD can be divided into: 

• Agents which reduce/prevent sickle red cell 

dehydration or red cell sickling or HbF inducers;  

• Agents targeting SCD vasculopathy and sickle cell-

endothelial adhesive events; 

• Anti-oxidant agents. 

 

Agents Which Reduce/Prevent Sickle Red Cell 

Dehydration and Sickling. Different agents targeting 

sickle red cells have been developed to prevent or limit 

HbS polymerization or to block the mechanism(s) 

involved in red cell dehydration.14,18,19,48,51-55 Targeting 

the reduction of circulating dense red cells and/or 

sickled red cells is very important, since these cells are 

easily trapped in microcirculation and participate to the 

pathogenesis of acute VOC.  

Recent reports indicate GBT440, an oral direct anti-

sickling agent, to be beneficial in SCD. GBT440 (or 

voxelotor) blocks HbS intermolecular contacts, 

preventing the generation of HbS fibers and red cell 

sickling.56-60 GBT440 has been shown (i) to ameliorate 

in vitro SCD red cell features such as red cell 

deformability or viscosity and (ii) to improve sickle red 

cell survival with decrease reticulocyte count.56-60 

Preliminary data on phase I/II double blind placebo 

study with GBT440 in healthy volunteers and few SCD 

patients show safety and tolerability of GBT440 

associated with an amelioration of hemolytic indices and 

a reduction in reticulocyte count 

(#NCT02285088).55,61,62 Blyden et al. have reported the 

compassionate use of voxelotor, at the dosage of 900 

mg/d up to 1500 mg/d for 24 weeks in a small group of 

subjects with severe untreatable SCD.  Voxelotor 

beneficially impacts SCD patient well-being with a 

reduction in number of hospitalization for severe VOC 

compared to patient’s clinical history.63 These data 

further support the on-going phase III clinical trial on 

voxelotor in a larger population of SCD patients (HOPE; 

#NCT03036813).  

 

Agents Targeting SCD Vasculopathy and Sickle Cell-

Endothelial Adhesive Events. SCD is not only a 

hemolytic anemia but also a chronic inflammatory 

disorder characterized by abnormally activated vascular 

endothelial cells, amplified inflammatory response, and 

the release of soluble factors, which promote abnormal 

adhesive interactions between erythrocytes, endothelial 

cells, and neutrophils.5,7,10,12,64,65 An increased number of  

circulating, abnormally activated endothelial cells has 

been identified in SCD patients during acute VOCs, 

indicating the presence of chronic vasculopathy, 

worsened by acute events.66 Thus, SCD is characterized 

by a chronic inflammatory vasculopathy that favors the 

recruitment of leukocytes and the entrapment of dense 

red cells with the generation of heterotypic aggregates 

(thrombi) with ischemic/reperfusion local damage. 

In this context, the major objectives of therapeutic 

strategies targeting sickle cell vasculopathy are to 

http://www.mjhid.org/
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reduce or prevent vascular endothelial activation and 

damage.  The end-point of anti-adherence therapy, 

alternatively, is to interfere with the initialization and/or 

amplification of adhesive events.  

In SCD, agents targeting SCD vasculopathy and 

sickle cell-endothelial adhesive events (Figure 3) can be 

divided into: 

 

i. Molecules targeting hemolysis-induced 

vasculopathy; 

ii. Agents that modulate the abnormal vascular tone; 

iii. Agents interfering with red cell vascular adhesion 

events. 

 

i. Molecules targeting hemolysis-induced 

vasculopathy. The chronic hemolytic anemia of SCD is 

for one-third intravascular and for two-third 

extravascular, via the reticulo-endothelial systems. Free 

Hb is present in the peripheral circulation of SCD 

patients, reacting with plasma nitric oxide (NO) with 

production of reactive oxygen species (ROS) and 

generation of MetHb. This is a key step for the release 

of free heme.9,67,68 

The physiological systems binding free Hb or free 

heme are haptoglobin (Hp) and hemopexin (Hx), 

respectively.
 

Table 1. Novel Therapeutic Targets in SCD and Experimental Treatments.

Targets Agents and Mechanism of Action References 

Sickle red cell 

dehydration or red 

cell sickling 

Anti-sickling agent  

GBT440 is an oral direct anti-sickling agent, to be beneficial in 

SCD. GBT440 (or voxelotor) blocks HbS intermolecular contacts, 

preventing the generation of HbS fibers and red cell sickling 

((#NCT02285088). on-going phase III clinical trial on voxelotor in 

a larger population of SCD patients (HOPE; #NCT03036813).  

56-60 

SCD vasculopathy 

and sickle cell-

endothelial 

adhesive events 

Molecules 

targeting 

hemolysis-induce 

vasculopathy 

Haptoglobin (Hp) and hemopexin (Hx) respectively binding free 

Hb or free heme 
67-76 

Agents that 

modulate the 

abnormal vascular 

tone 

- NO donors such as nitrate or NCX1443 or L-Arginine 

- Bosentan: Endothelin-1 (ET-1) receptors’ blocker 

18, 77-81, 

84, 85, 89, 

90, 91 

Agents interfering 

with red cell 

vascular adhesion 

events 

- Molecules interfering with the physical properties of the red cell-

endothelial adhesion process. RheothRx (Poloxamer 188), a non-

ionic surfactant copolymer was shown to improve microvascular 

blood. Mast Therapeutics announced in 2016 negative results for a 

new phase III trial with Vepoloxamer (MST-188).  

96-99 

- Molecules specifically interfering with sickle cell-endothelial 

adhesive mechanisms. Selectins blockers: (i) pan-Selectin 

antagonist (GMI-1070, rivipansel; #NCT01119833); (ii) 

humanized anti-P-Selectin antibody (SelG1, crinalizumab; 

SUSTAIN, #NCT0185361); (iii) P-selectin-aptamer; and (iv) 

sevuparin. 

11, 12, 15, 

50, 65, 104, 

107-112 

-      Molecules modulating inflammatory pathways involved in sickle 

cell endothelial adhesion. (i) Regadenoson, a selective A2A 

adenosine receptor agonist, reduces iNKT activation but it fails in 

interfering with the severity of the acute clinical manifestations of 

SCD patients enrolled in randomized phase II clinical trial 

(#NCT01788631) 

(ii) Antibodies against iNKT cells (NKTT120) (#NCT01783691). 

(iii) omega-3 fatty acids supplementation. A phase II multicenter 

randomized double-blind placebo-controlled study in SCD 

patients reported that ω-3 fatty acid supplementation reduced pain 

episode in SCD subjects (SCOT, #NCT02973360). 

14, 15, 99, 

115-128 

- Molecules affecting platelet function. Ticagrelor, a direct anti-

platelet agent (HESTIA1, #NCT02214121). A phase III clinical 

trial with ticagrelor in adults with SCD is on-going 

(#NCT02482298) 

11, 131 

Oxidative stress Anti-oxidant agents 

- N-Acetyl-Cysteine (NAC), an exogenous thiol donor. A clinical 

trial with high dose of NAC during acute VOCs related to SCD is 

ongoing (#NCT 01800526). 

- L-Glutamine. Glutamine is involved in GSH metabolism. A 

multicenter, randomize, placebo-controlled double-blind phase III 

clinical trial with L-glutamine (0.3 g/Kg twice a day) 

supplementation reduced the mean number and length of 

hospitalization, associated with increased median time to the first 

crisis.  

134-140 
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Figure 3. Schematic diagram of the mechanisms of action of pathophysiology based new therapeutic options for treatment of sickle cell disease 

and sickle cell vasculopathy. Hp: haptoglobin; Hx: hemopexin; NAC: N-Acetyl-cysteine; Ab: antibody; ROS: reactive oxygen species; iNKT: 

invariant natural killer T cells; NKTT120: humanized monoclonal antibody specifically depleting iNKT; NO: nitric oxide; ET-1: endothelin-

1; ET-R: endothelin-1 receptor.  

 

In SCD patients, both Hp and Hx levels are significantly 

reduced in steady state compared to healthy controls; 

they further decrease during acute VOCs.67,69 The highly 

pro-oxidant environment with the presence of free heme 

and free Hb promotes inflammation and abnormal 

vascular activation with increased expression of 

adhesion vascular molecules such as VCAM-1, ICAM-

1 or E-selectin.67,69 Studies in mouse models for SCD 

have shown that free heme induces vascular stasis and 

leukocyte extravasation with the trapping of dense red 

cells and neutrophils in microcirculation.70-72    

In human SCD patients, free Hb and free heme 

increase during acute VOCs with further reduction in Hp 

and Hx levels (Figure 1).72,73 Noteworthy, Hp levels 

correlate with pulmonary hypertension,67 suggesting 

that the blockage of free-Hb by Hp might possibly affect 

SCD related organ damage. In mouse models for SCD, 

the infusion of Hp has been shown to prevent vascular 

stasis. Encouraging data from small, in vivo human 

studies with infused Hp show that Hp protects the 

kidneys from free Hb-related tubular damage in patients 

who have undergone cardiopulmonary surgery or 

endoscopic sclerotherapy.67 Few case reports are present 

in the literature on the use of Hp in patients with 

hemolytic crisis and inherited red cell disorders.67,74 

Thus, Hp might be as a possible new therapeutic tool to 

be further explored in SCD.   

In the complex scenario of the pathogenesis of SCD 

vasculopathy, Hx, a high affinity heme binding protein, 

represents another interesting molecule that might be 

explored as a novel therapeutic option (Figure 1). The 

supplementation of Hx in mouse models for SCD has 

been shown to reduce heme induced oxidative stress, 

vascular endothelial injury, inflammation, and vascular 

stasis.9 Recently, a link between increased free heme and 

complement activation has been reported in cell- and 

animal-based model for SCD.75 Hx significantly reduces 

complement deposition in kidney from humanized SCD 

mice, highlighting the importance of controlling free 

heme plasma level as additional tool to limit 

inflammatory vasculopathy and related severe organ 

damage in SCD. The importance of optimal levels of Hp 

and Hx is also supported by a recent report on the use of 

therapeutic plasma exchange in SCD with severe VOC, 

resistant to red cell exchange.76  

Further studies need be carried out to develop and 

understand the potential clinical use of Hp and/or Hx in 

management of severe complication related to excess of 

free heme in SCD patients.   

i. Agents that modulate the abnormal vascular 

tone. Vascular tone results from the balance between 

vaso-dilatatory factors such as nitric oxide (NO) and 

vaso-constrictor factors such as the endothelin-1  (ET-1) 

system (Figure 1).18,77-81 In SCD, reduced NO local 

bioavailability, a consequence of the presence of free 

Hb, contributes to chronic vaso-constriction and 

amplifies the expression of vascular adhesion 

molecules.77,82,83 In addition, the release of arginase in 

http://www.mjhid.org/
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peripheral circulation by sickle red cells during chronic 

hemolysis, subtracts arginine from the urea cycle in 

endothelial cells, and further contributes to NO 

deficiency.77,82-85 Plasma NO metabolites are decreased 

in SCD patients during acute VOCs and decreased 

exhaled NO has also been reported. Thus, therapeutic 

strategies to supplement or modulate NO might 

beneficially interfere with the pathogenesis of acute 

SCD related clinical manifestations such as VOCs. 

Initial trials showed some positive, encouraging effects 

of inhaled NO on acute VOCs.82,86,87 However, a 

subsequent multicentric, double-blind, randomized 

placebo-controlled study in SCD with VOCs using 

inhaled NO showed no clinically significant effects.82 

New NO donors such as nitrate or NCX1443 need to be 

further evaluated in humanized animal-based pre-

clinical studies.83,88 Another possible strategy to increase 

NO production in SCD is the supplementation of L-

Arginine. Oral L-Arginine (i) decreases artery 

pulmonary pressure in SCD; (ii) improves leg ulcers; 

and (iii) contributes in pain control in SCD.84,85,89 The 

co-administration of L-Arginine with HU has been 

reported to increase levels of nitrate, suggesting L-

Arginine as an adjuvant molecule in treatment of 

SCD.84,85,89 

Endothelin-1 is a potent vasoconstrictor and 

bronchoconstrictor, whose plasma and urinary values 

are increased in SCD subjects in steady state and during 

acute VOCs.18,90,91 In a mouse model for SCD, the ET-1 

receptors’ blocker, bosentan, prevented hypoxia induced 

organ damage and affect neutrophil mediated 

inflammatory response, suggesting the modulation of 

the ET-1 system as an additional therapeutic option to 

interfere with the pathogenesis of SCD related clinical 

manifestation(s).18,92,93 It is of interest to note that 

increased ET-1 and high ET-1 levels have been shown 

to positively correlate with pain rating in children with 

SCD.94 This has been recently investigated in 

humanized mouse model for SCD, showing that 

endothelin receptor-type A might be involved in 

inflammatory mediated pain component throughout the 

modulation of Nav1.8 channel in primary sensing 

neurons.95 

 

ii. Agents interfering with red cell vascular 

adhesion events. In SCD, anti-adherence therapeutic 

strategies might represent an interesting, novel 

therapeutic strategy to prevent the generation of acute 

VOCs and to lessen SCD related organ damage (Figure 

1 and 3). The anti-adherence therapeutic options might 

be divided into three groups based on their mechanism 

of action: 

a) Molecules interfering with the physical properties 

of the red cell-endothelial adhesion process; 

b) Molecules specifically interfering with sickle cell-

endothelial adhesive mechanisms; 

c) Molecules modulating inflammatory pathways 

involved in sickle cell endothelial adhesion; 

d) Molecules affecting platelet function. 

 

a) Molecules interfering with the physical 

properties of the red cell-endothelial adhesion process. 

RheothRx (Poloxamer 188), a non-ionic surfactant 

copolymer was shown to improve microvascular blood 

flow by lowering viscosity and frictional forces. 

RheothRx was shown some beneficial effects on pain 

intensity and duration of hospitalization in a pilot study 

on SCD patients experiencing moderate to severe vaso-

occlusive crisis.96 RheothRx was tested in a phase III 

clinical study for treatment of VOCs in SCD. Although 

P188 has been shown to shorten the duration of pain 

crisis, its effects on acute events were limited.97,98  Mast 

Therapeutics announced in 2016 negative results for a 

new  phase III trial  with Vepoloxamer (MST-188), a IV 

agent tested to assess its effect on reducing the duration 

of vaso-occlusive crises.99 

 

b) Molecules interfering with sickle cell-

endothelial adhesive mechanisms. Recent studies in 

SCD have identified different mechanisms involved in 

sickle cell-endothelium adhesive events, which may be 

of therapeutic relevance (Figure 1): (i) the integrin α4β1 

receptor of fibronectin and the vascular adhesion 

molecule-1 (VCAM-1), E-selectin and P-selectin; (ii) 

the thrombospondin and/or collagen and receptor CD36, 

present on the surface of endothelial cells, platelets and 

reticulocyte-rich subpopulations of normal and sickle 

red cells; (iii) the sulfate glycolipids, which bind 

thrombospondin, von-Willebrand factor multimer and 

laminin; (iv) the Lutheran blood group proteins 

(BCAM/LU), whose  expression is increased in red cells 

from SCD patients; (v) the ICAM-4 (Landstein-Weiner 

blood group glycoprotein-LW), which binds αVβ3 

integrin receptors; and (vi) the exposure of PS detectable 

in a subpopulation of sickle red cells, which participates 

both in cell-cell adhesion to activated vascular 

endothelium surface and in the activation of a 

coagulation system. Monoclonal antibodies against the 

adhesion molecules or short synthetic peptides 

interfering with ICAM-4 or αVβ3 integrin have been 

shown to reduce adhesion events in SCD mouse models 

(Figure 1). It is of interest to note that antibodies against 

adhesion molecules block the heme induced vascular 

stasis, supporting again the connection between heme, 

vasculopathy, and adhesion events in SCD.68,100,101 

Among the agents interfering with red cell vascular 

adhesion events, the blockade of adhesion mechanisms 

through interference with Selectins seems to be a novel 

powerful therapeutic option for clinical management of 

SCD. Selectins are a family of molecules mediating 

adhesion of blood cells with activated vascular 

endothelial cells. and play a key role in leukocyte 

recruitment as well as in sickle red cell adhesion to 
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inflammatory activated vascular endothelium. In 

addition, studies have shown that P-selectin are 

increased in plasma of SCD patients.65,102-106 Different 

therapeutic strategies have been developed, to block 

selectins: (i) pan-Selectin antagonist (GMI-1070, 

rivipansel); (ii) humanized anti-P-Selectin antibody 

(SelG1, crinalizumab); (iii) P-selectin-aptamer; and (iv) 

sevuparin.11,12,15,50,65,104,107-112 Rivipansel is a 

glycomimetic pan-selectin antagonist, which was tested 

in phase-I and -II studies in SCD. Rivipansel showed a 

safe profile, reducing the levels of E-Selectin in SCD 

patients during acute VOCs.107,113 In phase II study, 

rivipansel beneficially affected the number of pain crisis 

in a small number of SCD subjects (#NCT01119833). 

However, these data were obtained including  some SC 

patients, which generates some difficulties in  their 

interpretation. An on-going phase II study is focused on 

SCD children.  

Crinalizumab is a humanized P-Selectin antibody, 

which has been tested in a multinational double-blind 

placebo-controlled trial (SUSTAIN, 

#NCT0185361).15,111 SCD subjects (SS, SC, S+ and S0 

genotype) were treated with crinalizumab either 2.5 or 5 

mg/Kg every 4 weeks. Crinalizumab at the dosage of 5 

mg/Kg every 4 weeks reduced the number of pain crisis 

and increased the time between VOCs in SCD 

independently from possible preceding HU 

treatment.15,111,112 

An additional strategy targeting P-Selectins is 

represented by the use of low molecular weight 

heparins, such as tinzaparin, which has been shown to 

block the P-Selectin system and to reduce the duration 

and the severity of VOCs in few cases of SCD 

patients.12,50 Sevuparin is a derivative of low-molecular 

weight heparin, lacking anticoagulant activity and it has 

been evaluated in SCD.109,114 Sevuparin acts on multiple 

targets: (i) P and L-selectins; (ii) thrombospondin- 

Fibronectin-Von Willebrand factor; and (iii) sickle-

leukocyte-endothelial cells interaction. A phase II 

multicenter international trial on sevuparin in acute 

VOCs is ongoing.  

 

c) Molecules modulating inflammatory pathways 

involved in sickle cell endothelial adhesion. Another set 

of novel therapeutic option is represented by agents 

modulating the inflammatory pathways that participate 

to adhesion events in SCD.  

Studies in different models of 

hypoxia/reoxygenation stress have shown that 

adenosine is released from cells and interacts with A (1-

3) receptors (AR), which are present on endothelial 

cells, leukocytes and iNKT cells. This promotes the 

activation of the transcriptional factor NF-kB, which 

orchestrates the inflammatory response. iNKT are a 

subgroup of T lymphocytes that affects both innate and 

adaptive immunity, participating to inflammatory 

cascade.115-117 Increased iNKT circulating cells have 

been observed in SCD subjects on both steady state and 

during acute VOCs. Antibodies against iNKT cells 

(NKTT120) have been developed, based on the key role 

that adhesion and inflammation are involved in the 

pathogenesis of severe acute complication of SCD 

(#NCT01783691).15,99,115 Field et al. recently reported 

the failure of regadenoson in reducing iNKT activation 

and in interfering with the severity of the acute clinical 

manifestations of SCD patients enrolled in randomized 

phase II clinical trial (#NCT01788631).118 

An attempt to target inflammatory vasculopathy and 

to modulate inflammatory response has been made 

based on the evidences in other diseases such as in 

cardiovascular disease looking to dietary manipulation 

with omega-3 fatty acids (ω-3 PUFAs).  

Supplementation with omega-3 fatty acids has been 

reported to (i) beneficially affect red cell membrane 

lipid composition; (ii) modulate soluble and cellular 

inflammatory response and coagulation cascade; and 

(iii) to favor NO production.119-122 In SCD, the fatty acid 

profile of sickle erythrocytes is altered compared to 

healthy controls, with a relative increase in the ratio of 

ω-6 to ω-3 PUFAs, in agreement with sustained chronic 

inflammation.123,124 In humanized mouse model for 

SCD, PUFA supplementation protects against acute 

sickle cell-related lung and liver damages during 

hypoxia/reoxygenation induced VOCs.14 A phase II 

multicenter randomized double-blind placebo-

controlled study in SCD patients reported that ω-3 fatty 

acid supplementation reduced pain episode in SCD 

subjects (SCOT, #NCT02973360).125-128 

 

d) Molecules affecting platelet function. The role 

of platelets in clinical manifestations of SCD on both 

steady state and acute events has been only partially 

characterized and much still remains to be 

investigated.5,11,50 Early evidence on the beneficial 

effects of ticlopidine on reducing the rate of pain crisis 

highlighted the potential role of platelet activation and 

aggregation during acute events in SCD.129 However, a 

multicentric phase 2 study on prasugrel, a third-

generation anti-platelet agent, in adult with SCD showed 

a reduction of platelet activation without change in pain 

rate.130 Recently, ticagrelor, a direct anti-platelet agent 

with some effects on vascular tone and inflammatory 

response has been evaluated in a dose-finding study on 

SCD children (HESTIA1, #NCT02214121).11,131 

Ticagrelor was well tolerated without significant drug 

related adverse events, in particular no hemorrhagic 

events were reported. Noteworthy, in SCD children 

ticagrelor induced platelet inhibition similar to that 

reported in adults with acute coronary disease.131  A 

phase III clinical trial with ticagrelor in adults with SCD 

is on-going (#NCT02482298).11,131 

 

Anti-Oxidant Agents and Sickle Cell Disease. SCD is 

also characterized by a highly pro-oxidant environment 

http://www.mjhid.org/
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due to the elevated production of reactive oxygen 

species (ROS) generated by increased levels of 

pathological free heme and iron and a reduction in anti-

oxidant systems such as GSH (Figure1).5,7,12,132,133 N-

Acetyl-Cysteine (NAC), an exogenous thiol donor, has 

been studied both in vitro and in vivo in SCD patients. 

NAC supplementation (1,200-2,400 mg/day) was 

shown to reduce the formation of dense red cells and the 

rate of hemolysis and to increase GSH levels in SCD 

subjects. However, Sins et al. have recently reported a 

randomized, placebo-, double-blind trial 

(#NCT01849016) on NAC in SCD. Although the study 

shows a failure of NAC in affecting acute clinical 

manifestations of SCD, the Authors point out that the 

low adherence of SCD to NAC treatment might be 

responsible for the reduced biological effect of NAC in 

SCD. A clinical trial with high dose of NAC during 

acute VOCs related to SCD is ongoing (#NCT 

01800526).134-136 

L-Glutamine is a likely anti-oxidant agent in SCD. 

Glutamine is involved in GSH metabolism since it 

preserves NADPH levels required for GSH recycling, 

and it is the precursor for nicotinamide adenine 

dinucleotide (NAD) and arginine.137-139 A first 

randomized, double blind, placebo-controlled parallel 

group trial with L-glutamine supplementation in SCD 

patients showed reduction in number of hospitalization 

compared to historic patients data.138 Recently, a 

multicenter, randomize, placebo-controlled double-

blind phase III clinical trial with L-glutamine (0.3 g/Kg 

twice a day) involving 230 SS/Sbeta0 patients with > 2 

pain crisis showed that L-glutamine supplementation 

reduced the mean number and length of hospitalization, 

associated with increased median time to the first 

crisis.137   Both studies have several limitations such as 

(i) the high rate of patient drop-out; (ii) the presence of 

fatal events due to multiorgan failure in L-glutamine 

arm; (iii) the lack of effects on hematologic parameters 

and hemolytic indices; and (iv) the absence of clear data 

on L-glutamine mechanism of action.137,140 Since no 

information are available on log-term use of L-

glutamine supplementation as well on the systemic 

effects of L-glutamine, the sickle cell scientific 

community should use caution in prescribing L-

glutamine supplement for both adult and pediatric SCD 

patients.140 Future studies are required to further define 

the role of anti-oxidant treatments in the clinical 

management of SCD subjects.  

 

Curative Options in Sickle Cell Disease. In the last 

two decades, progresses on hematopoietic stem cell 

transplantation (HSCT) strategies have allowed to offer 

a new curative option to patients with SCD. The major 

limitation in diffusion of HSCT is (i) the availability of 

leukocyte antigen (HLA)-matched sibling donor; (ii) the 

toxicities associated with myeloablative conditioning; 

and (iii) inflammatory vasculopathy.141-145 Recently, 

lentiviral gene therapy has been reported to be safe and 

to positively impact hematologic phenotype in a child 

with SCD.146 Different clinical trials on gene therapy in 

SCD are on-going in various countries.141-144 

Finally, the development of CRISPR/Cas9 genome 

editing (GE) strategy has been reported to represent a 

new potential therapeutic tool for genetic correction of 

SCD.147-149 However, in SCD GE is still limited to cell- 

and/or animal-based studies. 

 

Conclusions. In conclusion, the emerging picture for 

new treatment of SCD is that formation of dense red 

cells, vasculopathy, adhesion events and inflammation 

as well as oxidative stress might constitute new 

pharmacological targets (Figure 3).   

Promising data have been reported on new 

therapeutic tools interfering with P-selectin and 

modulating inflammatory vasculopathy. However, some 

concerns have been expressed about possible reductions 

of  appropriate inflammatory responses to pathogens, 

although the initial trials did not show any signal in this 

direction. A new field of combinatorial therapy for SCD 

will require a holistic approach, considering the 

improvement of patient quality of life as an important 

outcome in designing new clinical studies.  
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