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Abstract. The clinical picture of patients with sickle cell anemia (SCA) is associated with several 

complications some of which could be fatal. The objective of this study is to analyze the causes of 

death and the effect of sex and age on survival of Brazilian patients with SCA. Data of patients 

with SCA who were seen and followed at HEMORIO for 15 years were retrospectively collected 

and analyzed. Statistical modeling was performed using survival analysis in the presence of 

competing risks estimating the covariate effects on a sub-distribution hazard function. Eight 

models were implemented, one for each cause of death. The cause‐specific cumulative incidence 

function was also estimated. Males were most vulnerable for death from chronic organ damage 

(p = 0.0005) while females were most vulnerable for infection (p=0.03). Age was significantly 

associated (p ≤ 0.05) with death due to acute chest syndrome (ACS), infection, and death during 

crisis. The lower survival was related to death from infection, followed by death due to ACS. The 

independent variables age and sex were significantly associated with ACS, infection, chronic 

organ damage and death during crisis. These data could help Brazilian authorities strengthen 

public policies to protect this vulnerable population. 
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Introduction. The clinical picture of patients with 

sickle cell anemia (SCA) is associated with several 

complications some of which could be fatal.1-3 Besides 

the recurrent episodes of acute vaso-occlusive crises 

(VOCs), these complications include, among other 

things, stroke, acute chest syndrome, splenic and 

hepatic sequestration, infections, priapism, leg ulcers, 

retinopathy, avascular necrosis, cholelithiasis, 

progressive organ failure and death.3 The frequency 

and severity of these complications vary with age, time 

and sex. Ischemic stroke, for example, is more 

common in children whereas leg ulcers are more 
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common in adults.3 The probability of the recurrence of 

each complication at a certain age has not been well 

studied. The objective of this study is to analyze the 

causes of death using the competitive risk statistical 

model.4 This analysis is based on the recently reported 

retrospective data on the pattern of morbidity and 

mortality in children, adolescents and adults in Rio de 

Janeiro, Brazil.5 

 

Material and Methods. 

Patients: Retrospective data were collected and 

analyzed in patients with SCA including patients with 

sickle-β0-thalassemia (Sβ0thal), who were seen and 

followed at HEMORIO for 15 years from January 1, 

1998, through December 31, 2012. Children and adults 

were included in the study. The total number of 

patients enrolled was 1676. The diagnosis of SCA 

including sickle-β0-thalassemia was confirmed by high-

performance liquid chromatography (HPLC). The date 

and cause of death were confirmed from the patients’ 

charts if death occurred at HEMORIO. Death outside 

HEMORIO was suspected if patients failed to show up 

for follow-up and confirmed by interviews with the 

patients’ families and from death certificates. None of 

the patients was taking hydroxyurea. The study was 

approved by the Institutional Review Board (IRB) of 

HEMORIO. 

 

Statistical analysis. Statistical modeling was performed 

using Survival analysis in the presence of competing 

risks. 

Basically, three functions are used in survival data: 

the survival function, the cumulative distribution 

function, and the hazard function. 

In survival analysis, it is common to investigate the 

lifetime related to a single cause of death. However, 

there are more complex models, in which the death of 

the individual is related to one of several possible 

causes identified in the study. These models are called 

competing risk models being suitable in studies where 

individuals are exposed to more than one cause of 

failure or event. 

Gooley et al.6 define the competing risk as a 

survival model in which the occurrence of an event 

prevents or alters the probability of occurrence of 

another event. 

In general, three types of approach are used in the 

presence of competing risks:6 1 - Event-free survival 

model, using the Cox model4 considering the time until 

the occurrence of the first event. This model is not 

suitable because it does not consider the various risk 

factors; 2 – Cause-specific hazard model, where the 

Cox model is used considering one of the events as the 

main cause and the rest are censored. This approach is 

also unsuitable because it is not possible to estimate the 

common effect of a covariate for competing outcomes. 

Additionally, the sum of the cumulative distribution 

function for each outcome is different from the 

cumulative distribution function of the overall curve. It 

would also be necessary to be valid the assumption of 

independence between the event of interest and other 

competing events, considered censorship, which rarely 

occurs; and 3 – Hazard of subdistribution model, using 

the cumulative incidence function. This model does not 

require any assumption of independence of competing 

risks.7 

The cumulative incidence function, or 

subdistribution function, introduced by Kalbleisch & 

Prentice,8 is defined as the joint probability 

𝐹𝑖(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑖),    𝑖 = 1, ⋯ , 𝑝 

That is, 𝐹𝑖(𝑡) is the probability of failure for a 

specific cause, among p possible causes over time. 

Fine and Gray9 proposed a regression model 

implemented on the cumulative incidence function for 

analyzing competing risks. Modeling is performed by 

hazard of subdistribution function, defined as the 

instantaneous hazard of an individual suffering the 

event for a specific cause, conditional to have survived 

until a certain time t. 

γ(𝑡|𝑧) = 𝑒𝑥𝑝(𝛽′𝑧)𝛾0(𝑡) 

Where γ is the hazard of subdistribution; 𝛾0 is the 

baseline hazard of the subdistribution; 𝛽 is a vector of 

coefficients to be estimated; and 𝑧 is the vector of 

independent variables. 

The partial likelihood function is modeled as an 

extension of the Cox proportional hazards model,10 

weighted by 𝑤𝑖𝑗.   

ℒ̃(𝛽) = ∏ (
𝑒𝑥𝑝(𝛽𝑧𝑗)

∑ 𝑤𝑖𝑗𝑒𝑥𝑝(𝛽𝑧𝑖)𝑖∈𝑅𝑗

)

𝑟

𝑗=1

 

In this model, a patient who has suffered a 

competing risk is not removed from the risk set. This 

individual receives a 𝑤𝑖𝑗 =
𝐺(𝑡𝑗)

𝐺(𝑚𝑖𝑛(𝑡𝑖,𝑡𝑗))
 weight, where 

𝐺 is the nonparametric Kaplan-Meier11 distribution of 

the censorship. The weight 𝑤𝑖𝑗 is decreasing due to the 

decay of the Kaplan-Meier curve. The distribution of 

the censorship is given by the pair (𝑇𝑖 , 𝐶𝑖), and 𝑇𝑖 is the 

time measured until the occurrence of the first 

competing event; and 𝐶𝑖 = 0 if it is observed the 

occurrence of some type of event and 𝐶𝑖 = 1 if no 

event occurs.12 Thus, there is an inversion of the usual 

concepts of event and censorship. 

In each instant 𝑡𝑗, in which the event of interest has 

been observed, the risk set is composed of individuals 

who have not suffered any event until the time 𝑡𝑗, 

receiving the weight 𝑤𝑖𝑗 = 1; and those who have 

suffered a competing event before this time 𝑡𝑗 being 

weighted as 𝑤𝑖𝑗 ≤ 1. Thus, given the occurrence of the 

event of interest in time 𝑡𝑗, for each individual who has 

suffered a competing event in 𝑡𝑗, the greater the 

distance between points 𝑡𝑖 and 𝑡𝑗, the lower the weight
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Table 1. Risk of subdistribution regression model. 

  Coefficient Relative Risk Lower 95% CI Upper 95% CI p 

Acute Chest Syndrome  Female -0.3033 0.7384 0.4623 1.1793 0.2042 

(n.º  of events: 71) Age -0.0385 0.9623 0.9418 0.9832 0.0004 

Infection Female 0.5000 1.6487 1.0496 2.5897 0.0300 

(n.º  of events: 82) Age -0.0194 0.9807 0.9621 0.9997 0.0467 

Stroke Female -0.4294 0.6509 0.3260 1.2995 0.2235 

(n.º  of events: 33) Age -0.0154 0.9847 0.9558 1.0145 0.3102 

Cardiac Causes Female 0.6576 1.9301 0.5933 6.2791 0.2746 

(n.º  of events: 13) Age 0.0176 1.0177 0.9724 1.0652 0.4500 

Chronic Organ Damage Female -1.5853 0.2049 0.0837 0.5016 0.0005 

(n.º  of events: 30) Age 0.0282 1.0286 0.9991 1.0589 0.0575 

 

𝑤𝑖𝑗.12 

 

Results. The causes of death of the 281 patients who 

died were analyzed. The most common causes of death 

included infection mostly due to sepsis, acute chest 

syndrome (ACS), overt stroke, sudden during crisis and 

organ damage due to hepatic or renal failure. Thirteen 

patients died of unrelated causes mostly due to trauma. 

In this work, survival analysis was performed using 

the risk of sub-distribution regression model.9 These 

models consider the cumulative incidence function, 

using a weighting factor for each individual 

considering all outcomes. Thus, the individual who 

suffers from the competing event is not censored 

receiving a weight that decreases gradually with time.  

Eight models were implemented, one for each cause 

of death related to SCDA, as shown in Table 1: Acute 

Chest Syndrome, Infection, Stroke, Cardiac Causes, 

Chronic Organ Damage, Death During Crisis, Other 

(Splenic Sequestration, Hemolytic Crisis or Hepatic 

Crisis) and Unknown. 

It is observed that the males are most vulnerable for 

death from chronic organ damage (p = 0.0005) while 

females are most vulnerable for death from infection 

(p=0.03). Sex did not show a statistically significant 

association with other causes of death. Age is 

significantly (p ≤ 0.05) associated with death due to 

ACS, infection, and death during crisis. The increase of 

one year in age corresponds to a 3.8% reduction in the 

risk of death by ACS; 1.9% in the risk of death from 

infection; and 6.2% for death during crisis. On the 

other hand, the increase of one year in age implies an 

increase of 2.8% in the risk of death from chronic 

organ damage, at a significance level of 10%. 

Figure 1 shows the cumulative incidence function, 

where one can observe that the lower survival is related 

to death from infection, followed by death due to ACS. 

Compared to the model of competing risks, the 

independent variables age and sex were significantly 

associated with the outcomes with an asterisk.  

 
Figure 1. 

 

Analyses were performed with the use of packages 

“cmprsk” 13 and “mstate” 14-16 of R software.17 

 

Discussion. Despite all Brazilian efforts, the mortality 

of patients with SCA is still very high in Brazil.2,3 

These efforts included, among other things, newborn 

screening, penicillin/antibiotic prophylaxis, vaccination 

including anti-pneumococcus, anti-meningococcus, 

annual anti-influenza, blood transfusion and 

transcranial doppler determinations.3,5,18  In this study, 

we used the competitive risk analysis to evaluate the 

causes of mortality among our cohort. 

A competing risk is an event whose occurrence 

either precludes the occurrence of another event under 

examination or fundamentally alters the probability of 

occurrence of this other event, so it is an ideal model to 

analyze causes of death in a specific disease with 

multiple possible causes of death as in SCD.6 It was 

used before in other chronic disease but never is SCD 

in Brazil before.19 

The competitive risk model was used because it is 

adequate in survival analysis when there are mutually 
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exclusive events, that is when the occurrence of one 

event prevents another event occurring. In the article, 

events are deaths from various causes. The cumulative 

incidence function (represented by the graph) evaluates 

for each patient the probability of occurrence of a 

specific event before a certain time t. The risk sub-

distribution model estimates the effect of independent 

variables for each specific event, considering the 

presence of competitive risks. 

The reasons for the relatively low death rate of 

females due to chronic organ damage are unknown. 

Possibilities include gender differences in nitric oxide 

availability,20 and the influence of the X-chromosome 

linked hemoglobin (Hb) F gene21 which may be 

protective against organ damage in females. However, 

Dover’s et al. study was not confirmed by additional 

studies. In addition, the increase in Hb F by the X-

chromosome is minimal in comparison to other studies 

indicating that Hb F has to be as high as ≥ 8% to be 

effective. Other determinants of survival such as 

hyperviscosity, alpha genotypes, and beta haplotypes 

could not be determined at HEMORIO. 

 

Conclusions. Mortality among patients with SCD 

using the competing risks of death was evaluated for 

the first time in a single institution in Rio de Janeiro, 

Brazil.  

In this article, we used the subdistribution hazard 

function which evaluates the effect of covariates on the 

cumulative incidence function for each of the 

competitive events. This modeling is advantageous 

because it makes no assumption about the 

independence of competitive events. 
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