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Abstract. Sickle cell disease (SCD) is an extremely heterogeneous disease that has been 
associated with global morbidity and early mortality. More effective and inexpensive therapies 
are needed. During the last five years, the landscape of the pharmacotherapy of SCD has 
changed dramatically. Currently, 54 drugs have been used or under consideration to use for the 
treatment of SCD. These fall into 3 categories: the first category includes the four drugs 
(Hydroxyurea, L-Glutamine, Crizanlizumab tmca and Voxelotor) that have been approved by 
the United States Food and Drug Administration (FDA) based on successful clinical trials. The 
second category includes 22 drugs that failed, discontinued or terminated for now and the third 
category includes 28 drugs that are actively being considered for the treatment of SCD. 
Crizanlizumab and Voxelotor are included in the first and third categories because they have 
been used in more than one trial. New therapies targeting multiple pathways in the complex 
pathophysiology of SCD have been achieved or are under continued investigation. The emerging 
trend seems to be the use of multimodal drugs (i.e. drugs that have different mechanisms of 
action) to treat SCD similar to the use of multiple chemotherapeutic agents to treat cancer. 
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Introduction. Sickle cell anemia (SCA) is among the 
most common inherited hemolytic anemias, and affects 
an estimated 100,000 persons in the US and probably 
millions worldwide.1 The true global incidence of 
sickle cell disease (SCD) is unknown. The World 
Health Organization has estimated that each year 
220,000 babies are born with SCD in Africa, and that 
SCD accounts for up to 16% of deaths of children aged 
< 5 years in some African countries.2,3 The reported 
prevalence of the sickle cell trait in African Americans 
varies from 6.7 to 10.1% and in Africans the range is 
from 10 to 40% across equatorial Africa and decreases 
to between 1 and 2% on the North African coast and 

< 1% in South Africa.4-6 The prevalence of the sickle 
cell trait varies widely worldwide and may be as high 
as 50% in certain regions.6-8 The prevalence of SCA is 
~ 1 in 600 newborn African American infants and 
150,000 - 300,000 newborn Africans.9-11 

Sickle cell anemia is a hereditary disorder of 
hemoglobin (Hb) where the sickle gene is inherited, 
homozygously, from both parents. The sickle mutation 
is the result of a single base change (GAG → GTG) in 
the sixth codon of exon 1 of the β-globin gene 
responsible for the synthesis of the β-globin 
polypeptide of the Hb molecule (α2β2). This change, in 
turn, results in replacement of a normal glutamic acid 
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with valine at position 6 of the β-globin chain and the 
formation of sickle Hb. Sickle erythrocytes are rigid 
with decreased deformability and reduced life span 
resulting in hemolysis, vaso-occlusive disease, 
vasculopathy and subsequent inflammation and end 
organ damage.12,13 

Clinical manifestations of SCD include pain 
syndromes, anemia and its sequelae, organ failure 
including infection/inflammation and comorbid 
conditions.14 The painful acute vaso-occlusive crisis 
(VOC) is the hallmark of SCD and traditionally, has 
been thought to be to be due to sickle erythrocytes 
occluding the microvasculature, especially within 
bones, and causing tissue ischemia, injury, and pain. 
Recent studies, however, suggest that the mechanism is 
a more complex process that is multicellular, involving 
interactions with the vascular endothelium, as well as 
contributions from hemolysis, inflammation, and 
coagulation.15 Despite having a common genetic basis 
and similar pathophysiology, individual patients with 
SCA have a highly variable clinical phenotype. The 
prevalence of these complications varies with age from 
infancy through adult life as shown in Figure 1. 
However, pain, infections and anemia requiring blood 
transfusion occur throughout the life span of affected 
patients. 
Clinical care for affected individuals has been mostly 
palliative, including supportive, symptomatic, 
preventative and abortive approaches, as shown in 
Table 1.  

Advances in the management of SCD beyond 
palliation include pharmacotherapy and curative 
cellular therapies. The latter include stem cell 
transplantation and gene therapy15,16 and these will not 

be addressed in this review. In addition, some of the 
current approaches to the management of SCD could 
be pharmacologic or nonpharmacologic, especially 
when it comes to pain management. Examples of 
nonpharmacologic treatments include meditation, 
therapeutic massage, transcutaneous electrical nerve 
stimulation, heat and cold packs, distraction, relaxation, 
music, guided imagery, self-hypnosis, acupuncture and 
biofeedback.13,17 Current examples of pharmacologic 
therapies include the use of non-steroidal anti-
inflammatory drugs, opioids, adjuvants, steroids, and 
so on.13 The aim of this study is to review the current 
status of pharmacotherapy for the treatment of SCD, 
Historically, pharmacotherapeutic drugs that have been 
tried to treat SCD fall into three groups. The first group 
includes the successful drugs approved by the FDA 
shown in Table 2. The second group includes the drugs 
that were tried but failed to show a beneficial effect 
shown in Table 3. The third group includes potential 
drugs that are being used in different phases of 
randomized clinical trials shown in Table 4 and will be 
discussed below. 

 
The Economic Burdens of SCD. Sickle cell disease is 
a global disease affecting millions of people worldwide 
and hundreds of thousands in the US. It affects not only 
those of African descent, but also persons of Middle 
Eastern, Indian, Latin American and Mediterranean 
descent. It has received very little attention and even 
less research funding. National Institute of Health 
(NIH) grants for sickle cell research were much less 
than that for less-common inherited diseases. In 1972, 
the National Sickle Cell Anemia Control Act was 
signed, which paved the way for more research funding 

 

 
Figure 1. Sequence of complications of sickle cell anemia from birth through adult life. ACS = acute chest syndrome; AVN = Avascular 
necrosis; CVA = Cerebrovascular accident. From Hem Onc Clin North Am. 2005; 19:785-802. Used with permission.  
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Table 1. Palliative Management of Sickle Cell Disease and its Complications. 

Management Definition 

1. Supportive  Management intended to maintain the essential requirements for good health 
such balanced diet, sleep, hydration, folic acid, etc. 

2. Symptomatic  
Management targeted to alleviate the symptoms of the disease as they occur. 
These include blood transfusion for symptomatic anemia, analgesics for 
pain, antibiotics for infections, etc. 

3. Preventative  
Approaches to prevent the occurrence of complications of the disease. These 
include things like vaccination, avoidance of stressful situations, transfusion 
to prevent the recurrence of stroke, etc. 

4. Abortive  
Major purpose of this approach is to abort painful crisis thus preventing 
them from getting worse or precipitating other complications. Nitric oxide 
aborted VOCs in the ED but not during hospitalization. 

Adapted from  Blood. 2012;120(18):3647-56.  Used with permission. 
 
Table 2. Approved Drugs. 

Compound Company Structure Mechanism of Action Formulations Indication 

Hydroxyurea 
 
 
 

Numerous 

Hydroxycarbamide 
CH4N2O2 

 

An antineoplastic agent 
that inhibits DNA 
synthesis through the 
inhibition of 
ribonucleotide 
diphosphate reductase. 
Hb F Induction, 
reduces inflammation 
and hemolysis  

Capsules: Hydrea and 
Droxia; 100, 200, 300, 
400, 500 mg  
 
Tablets: Siklos;100 
mg, 1000 mg   
 
Solution 100 mg/ml or 
higher as needed 
 

Sickle cell 
anemia; 
Myeloproliferative 
disorders, certain 
cancers 

L-Glutamine 
(Endari) 

Emmaus 
Medical Inc. 

2-Amino-4-carbamoylbutanoic acid 

   

Not well known. It may 
improve the NAD 
redox potential in 
sickle RBCs through 
increasing the 
availability of reduced 
glutathione. 

Powder in packets 
containing 5g each  

Reduction of the 
acute 
complications of 
sickle cell disease 
in adult and 
pediatric patients 
5 years of age and 
older 

Crizanlizumab-
tmca 
 

Novartis Monoclonal antibody  Anti-P-selectin Intravenous solution 

Reduces the 
frequency of 
VOCs in adults 
and pediatric 
patients aged 16 
years and older 

Voxelotor 
(Oxbryta, 
GBT440) 

Global 
Blood 
Therapeutics 
Inc 

Benzaldehyde, 2-hydroxy-6-((2-(1-(1-
methylethyl)-1H-pyrazol-5-yl)-3-
pyridinyl)methoxy) 

 

Hb S Polymerization 
inhibitor 

Tablets (500 mg) for 
oral use 

Treatment of 
sickle cell disease 
in adults and 
pediatric patients 
12 years of age 
and older 

NAD = nicotinamide adenine dinucleotid. 

 
and established screening and education programs. The 
NIH dedicated $10 million to be spent on SCD 
research at that time.13 The economic burden to 
patients with SCD is significant.18-22 Many patients are 
living in poverty with their illness due to chronic pain, 
and physical disability limiting their ability to work 
and contribute to society.13 The economic burden on 

society was estimated at $1.1 billion in 2009.18 This 
number is projected to increase as patients with SCD 
are living longer as we continue to improve supportive 
care. A solution to this problem is not simple, requiring 
multidisciplinary action with increased funding, 
legislation, research and supportive services. Simple 
therapy with hydroxyurea (HU) is still not available to
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Table 3.  Completed multicenter randomized double-blind placebo-controlled trials to prevent or treat sickle painful crises that failed, 
discontinued or terminated. 

Compound Company Mechanism of Action Indication Stage of Development Reference 

Acetylsalicylic acid Takeda Benzoic acid, 2-
(acetyloxy)- 

General pain and thrombosis, 
SCD 

Phase I and II study for SCD 
completed [1] 

AES-103 AesRx Anti-sickling agent Anemia; SCD 

Phase I study for SCD 
completed. Phase II study for 
SCD terminated by the 
Sponsor due to unbinding 
between study drug and 
placebo groups at the subject, 
site and Sponsor levels 

[2,3] 

Dipyridamole Boehringer Ingelheim 
Pharmaceuticals, Inc RBC hydration Thrombosis; SCD Phase II study withdrawn [4] 

Eptifibatide 
Millennium and 
Schering 
Plough 

Antiplatelet agent 
Use as therapeutic 
agent for VOC 
 
 

Acute myocardial infarction, 
unstable angina, abrupt closure 
following coronary 
angioplasty, stroke and other 
diseases 
associated with arterial 
thrombosis; treat VOC 

Phase II for SCD terminated 
due to slow accrual and no 
cost extension not approved 
by NHLBI 
 

[5] 

HQK 1001 HemaQuest γ globin gene promoter SCA and β-Thalassemia Phase II for SCD terminated [6] 
Inhaled Nitric Oxide 
(NO) Ikaria Vasodilator Therapeutic for VOC Phase III for SCD; Failure [7] 

L-citrulline Asklepion Vasodilator 

Pediatric pulmonary 
hypertension, post-
cardiopulmonary bypass 
surgery; SCD 

Ceased; Phase I for SCD [8] 

Magnesium Sulfate 
(MgSO4) 

Numerous companies 
produce magnesium 
as 
magnesium oxide, 
magnesium citrate, 
magnesium sulfate, 
magnesium gluconate 
and magnesium 
pidolate 

RBC hydration 
Therapeutic agent 

Vitamin supplement; Treat 
VOC 

Phase II and III for 
SCD; Failure 

[9] 
 
 

MP4CO Sangart 
Prevents 
microvascular stasis; 
Therapeutic agent 

Anemia; Treat SCD 

Discontinued; Phase I 
completed. Phase II 
withdrawn prior to enrollment 
for SCD 

[10,11] 
 

Nonionic 
polyoxyethylene-
polyoxypropylene; 
Poloxamer 188 (Flocor) 

CytRx 

Oxirane, methyl-, 
polymer with oxirane, 
block, Therapeutic 
agent 

 

Surfactant 
 

Treat VOCs and ACS in SCD 
and acute 
myocardial infarction 

[12-13] 
 

Omega-3-acid ethyl 
esters 
 
 

Glaxo Smith Kline Anti-inflammatory 
agent 

Improves several 
cardiovascular risk factors: 
lowers serum triglyceride 
concentration, lowers blood 
pressure, reduces resting heart 
rate, improves endothelial 
dysfunction; SCD 

Phase II for SCD terminated 
due to manufacturing problem 
with study drug 

[15,16] 
 

Prasugrel (DOVE Trial) Eli Lilly 
Inhibition of platelet 
activation and 
aggregation 

Prevention of VOC Failure [17] 
 

Senicapoc Pfizer 
Gardos channel 
blocker, Preventive 
agent 

Prevention of VOC 

Phase II completed for SCD; 
Drug increased red cell 
survival and hematocrit and 
blood viscosity; Phase III trial 
failed 

[18,19] 
 

Sildenafil   Preventive agent Prevention of VOC Failure [20, 21] 
 

Sodium nitrite 
 Hope 

Used to treat cyanide 
poisoning,  
Therapeutic agent for 
leg ulcers 

Vasodilator; treat SCD leg 
ulcers 

Phase I and II study for SCD 
terminated due to low 
enrollment 

[22] 

http://www.mjhid.org/


 
  www.mjhid.org Mediterr J Hematol Infect Dis 2020; 12; e2020010                                                         Pag. 5 / 24 

 

TRF-1101 TRF Pharma Anti-sickling agent SCD 

Phase I study completed and 
successfully demonstrated 
improved microvascular 
blood flow in patients with 
SCD and revealed no drug-
related side effects.  
Phase II study terminated  
due to perceived futility 
because the baseline pain 
score in first 40 patients was 
too low to be able 
demonstrate improvement. 

[23,28] 

Varespladib sodium Shionogi 
Inhibitor of secretory 
phospholipases A2 
(sPLA2) 

Therapy for acute chest 
syndrome in SCA 

Discontinued; no current 
studies being conducted in 
relation to SCD 

[24] 

Vepoloxamer 18 (EPIC) Mast Therapeutics Similar to Poloxamer 
188 Therapeutic for VOC Failure [25] 

Vorintostat 
 Merck & Co. Hb F induction Cutaneous T-cell lymphoma; 

SCD 
Phase II terminated due to 
slow accrual [26] 

Sevuparin Modus therapeutics 

Polysaccharide‐based 
drug that is designed to 
retain the anti‐adhesive 
properties of heparin.  
Therapeutic agent 
 

Treatment of VOCs 

Underwent Phase I and II  
Trials. Failed to Show 
Clinically Meaningful 
Improvements in Managing 
VOCs,  

[27] 
 
 
 
 
 

Rivipansel sodium; 
GMI-1070 GlycoMimetics 

1,3,6-
Naphthalenetrisulfonic 
acid, 8-[[13-
[(1R,3R,4R,5S)- 
3-[[2-O-benzoyl-3-O-
[(1S)-1-carboxy-2-
cyclohexylethyl]-_-D-
galactopyranosyl]oxy]-
4-[(6-deoxya-L-
galactopyranosyl)oxy]- 
5-[[(1,2,3,6-
tetrahydro- 
2,6-dioxo-4 
pyrimidinyl) carbonyl] 
amino] cyclohexyl]- 

Inflammation and VOCs in 
SCD. 
Therapeutic agent 
 
 

Phase III to treat VOC failed [28,29] 
 

Sanguinate Prolong 
Pharmaceutical 

Sanguinate is 
PEGylated Bovine 
Carboxyhemoglobin 

Designed to prevent clumping 
of RBC and maintain blood 
flow. Therapeutic agent 

Phase II trial to treat VOC 
failed [30] 

NHLBI: National Heart, Lung, and Blood Institute; RBC = Red blood cell; SCA = Sickle cell anemia; SCD = Sickle cell disease; VOC: 
Vaso-occlusive crisis.  
 
the millions in Africa today. As we continue to push 
for new therapies for SCD, HU continues to have 
tremendous potential in the global marketplace. 
 
Evolution of the Approaches to Treat SCD. Since 
sickled cells were first described in 1910 and the 
mutation causing abnormal Hb S was identified in 
1949, the complex mechanism underlying its 
pathophysiology continues to evolve.23 A cascade of 
events driven by endothelial damage and inflammation 
leads to vasculopathy. The inciting event is injury to 
the red blood cell (RBC) membrane. Hemoglobin S 
polymerization impairs deformability of the RBC and 
causes oxidative injury and destruction of the RBC. 
RBC injury exposes phosphatidyl serine and releases 
Hb and other intracellular contents. This in turn 
depletes NO, increases endothelial adherence, releases 
proinflammatory cytokines and activates the 

coagulation cascade causing ischemia, reperfusion 
injury and vascular damage.12,17,23 

Damaged sickle cells are prone to adhere to the 
endothelium by adhesion molecules. The RBC 
membrane receptors VLA-4/a4b1 bind to endothelial 
receptors directly to vascular cell adhesion molecule 1 
(VCAM-1) and interacts with subendothelial matrix 
proteins (BCAM/LU, a4b1 with the laminin and von 
Willebrand factor).24,25 Red blood cell interactions with 
the vascular endothelium also lead to the production of 
oxygen radicals by activating transcription factor 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB). NF-kB upregulates the production of 
endothelial adhesion molecules such as E-selectin, 
VCAM-1 and intracellular adhesion molecule-1 
(ICAM-1). P-selectin and E-selectin on endothelial 
cells have been suggested to participate in.26,27 

In preclinical studies an anti-P-selectin molecule
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Table 4. Potential drug therapies for the management of SCD. 

Compound Company Structure Indication Stage of Development Mechanism of Action 

Decitabine Astex 
Pharmaceuticals 5-aza-2’-deoxycytidine Myelodysplastic 

syndrome, SCD 
Phase II study completed 
for SCD 

DNA methylase  
inhibitor; Hb F 
induction 

Sodium butyrate Sigma Aldrich C4H7NaO2 Inhibit tumor cell 
growth, SCD 

No current studies 
being conducted in 
relation to SCD 

Hb F induction 

Pomalidomide Celgene 
Corporation C13H11N3O4 

Graft versus host 
disease, myelofibrosis, 
scleroderma and 
idiopathic pulmonary 
Fibrosis, SCD  

Phase I study completed for 
SCD  Hb F induction 

Panobinostat Novartis 

(2E)-N-Hydroxy-3-[4-[[[2-
(2-methyl-1H-indol-3-yl) 
ethyl]amino]methyl]phenyl]- 
2-propenamide 

Treatment of multiple 
myeloma and other 
cancers, SCD 

Phase I for SCD Hb F induction 

Intravenous Ig 
GRIFOLS 
BIOLOGICALS, 
Inc. 

C6332H9826N1692O1980S42 
Plasma protein 
replacement 
Therapy, SCD 

Recruiting for Phase I/II for 
SCD 

Inhibits cellular 
adhesion 

Low-molecular 
weight heparin Sanofi (C26H40N2O36S5)n 

Deep vein thrombosis, 
Myocardial infarction, 
unstable angina, SCD 

Phase II for SCD Inhibits cellular 
adhesion 

Dalteparin Pfizer 

2-O-sulpho-α-L-
idopyranosuronic 
acid structure at the 
nonreducing end and a 6-O-
sulpho-2,5-anhydro-D-
mannitol structure at the 
reducing end of their chain 

Acute venous 
thromboembolism, SCD 

Phase II completed for SCD 
 

Inhibits cellular 
adhesion 

SelG1 
(Crizanlizumab) 

Selexys 
Pharmaceuticals; 
Now Novartis 

Humanized P-selectin 
antibody 

VOCs in children and 
adults with SCD 

Sustain Trial Phase II 
completed for VOC; Four 
other trials are ongoing  

Inhibits cellular 
adhesion 

Propranolol Forest 
Laboratories 

2-Propanol, 1-[(1-
methylethyl) amino]-3-(1-
naphthalenyloxy) 

Hypertension, SCD Phase II completed for SCD Inhibits cellular 
adhesion 

Regadenoson: 
Adenosine 2A 
receptor 
antagonist 

Gilead Sciences 

1-(6-Amino-9-β-D-
ribofuranosyl-9H-purin-2-
yl)-N-methyl-1H-pyrazole- 
4-carboxamide 

Vasodilator Phase II completed for SCD 

Anti-inflammatory 
Agent  
 
   

NKTT120 NKT 
Therapeutics 

Humanized antibody to 
iNKT 

Rapid and sustained 
iNKT cell depletion in 
adults with SCD 

Phase I study for SCD 
completed 

Reduce chronic 
inflammation associated 
with SCD 

Atorvastatin 
Statins FA Davis (C33H34FN2O5)2Ca. 3H2O 

Improves endothelial 
dysfunction in SCD with 
nephropathy 

Phase II trial has just been 
completed 

3-hydroxy-3-
methylglutaryl-
coenzyme A (HMG-
CoA) reductase 
inhibitor 

Zileutin 

Abbott 
Laboratories and 
now Cornerstone 
Therapeutics 
Inc. 

C11H12N2O2S 

Approved for the 
prophylaxis and 
treatment of chronic 
asthma for patients who 
are age 12 and 
older. Beneficial in SCD 
animal model 

Phase I trial completed 
Inhibits 5- lipoxygenase, 
a potent inflammatory 
leukotriene 

N-acetyl cysteine Galleon 
Pharmaceuticals 

L-Cysteine, N-acetyl 
C5H9NO3S 

Rad/chemotherapy-
induced mucositis; 
Radio/chemotherapy 
induced injury, bone 
marrow, 
thrombocytopenia; 
apnea, SCD 

Phase III for SCD 
completed 

Anti-inflammatory 
Agent, reduces 
oxidative stress in sickle 
cell patients 

α-Lipoic acid Meda Biotech 
Inc. 

1,2-Dithiolane-3-pentanoic 
acid 
C8H14O2S2 

Diabetic neuropathy, 
SCD 

In an open randomized trial, 
the ALA dose used was not 
effective to prevent 
oxidative damage in 
patients with SCD 

Anti-inflammatory and 
anti-oxidant agent 
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Canakinumab Novartis 

Canakinumab is a 
recombinant, human anti-
human-IL-1β monoclonal 
antibody that belongs to the 
IgG1/κ isotype subclass 

For Familial Cold 
Autoinflammatory 
Syndrome (FCAS), 
Muckle-Wells 
Syndrome (MWS) and 
SCD 
 

Phase II ongoing Anti-inflammatory 

Ambrisentan 

Augusta 
University with 
Gilead Sciences 
and NHLBI as 
collaborators 
 

Endothelin Receptor 
antagonist (ERA) 

Determination of its 
safety and tolerability in 
treating SCD 

Phase I 
Anti-inflammatory, 
analgesic and improves 
pulmonary blood low 

Rivaroxaban Bayer 

5-Chloro-N-({(5S)-2-oxo- 
3-[4-(3-oxomorpholin-4-
yl)phenyl]-1,3-oxazolidin-5-
yl}methyl) thiophene-2-
carboxamide 

For treatment of 
thrombosis 
including stroke, prevent 
VOC 

Phase I for SCD completed Direct oral anti-
coagulant 

Arginine 

Numerous 
companies 
produce since 
this is a vitamin 
supplement 

2-Amino-5 
guanidinopentanoic acid 

 

Chest pain, high blood 
pressure and peripheral 
arterial disease, SCD 

Phase III study for SCD 
completed in Brazil. Phase 
II study for SCD completed 
in US. Another Phase II 
study for SCD is recruiting 
in the US.  
 

Vasodilatation 
 

Inhaled Nitrix 
Oxide (NO) in the 
ED 

INO 
Therapeutics 

 Therapeutic for VOC in 
the ED 

double-blind, randomized, 
placebo controlled clinical 
trial 

Vasodilatation 
 
 

PF 04447943 Pfizer 

6-[(3S,4S)-4-methyl-1-
(pyrimidin-2-
ylmethyl)pyrrolidin-3-yl]-1-
(tetrahydro-2H-pyran-4-yl)-
1,5-dihydro-4H-
pyrazolo[3,4-d]pyrimidin- 
4-one 

Evaluate change from 
baseline in potential 
SCD-related biomarkers 

Phase 1b for patients with 
SCD completed 

Vasodilatations; 
Phosphodiesterase 9A 
inhibitor 

IMR-687 Imara Inc 

6-[(3S,4S)-4-Methyl-1-(2-
pyrimidinylmethyl)-3-
pyrrolidinyl]-3-(tetrahydro-
2H-pyran-4-yl)imidazo[1,5-
a]pyrazin-8(7H)-one 
 
Molecular formula C21 H26 
N6 O2 

SCA (Homozygous 
HbSS or Sickle-β0 
Thalassemia) 

Phase 1a completed. Phase 
2a is recruiting with an 
open extension study 

Phosphodiesterase 
inhibitor with 
multimodal mechanism 
of action:  
Vasodilatation 
Inhibition of white 
blood cell adhesion 
Increase Hb F level 
 

Riociguat Bayer 

Methyl 4,6-diamino-2-[1-(2-
fluorobenzyl)-1H-pyrazolo 
[3,4-b]pyridin-3-yl]-5-
pyrimidinyl(methyl) 
carbamate 
 

Multicenter study in 
patients with SCD 

Phase 2 multi-center, 
randomized, double-blind, 
placebo-controlled, parallel 
groups study. Recruiting 

Riociguat is a stimulator 
of soluble guanylate 
cyclase (sGC), an 
enzyme in the 
cardiopulmonary system 
and the receptor for NO 
resulting in 
vasodilatation 
 

Oinciguat 
(IW-1701) 

Ironwood, 
Cyclerion 
Therapeutics 

OlinciguatUNII-
PD5F4ZXD2 
 
C21H16F5N7O3 
 

Patients with SCD 

STRONG SCD to evaluate 
the safety and tolerability of 
different dose levels in 
SCD patients. Recruiting 

Stimulates guanylate 
cyclase (sGC), known to 
play a key role in the 
production of nitric 
oxide. Vasodilatation 

Voxelotor (GBT- 
440)  

Global Blood 
Therapeutics Inc 

Benzaldehyde, 2-hydroxy-6-
((2-(1-(1-methylethyl)-1H-
pyrazol-5-yl)-3-
pyridinyl)methoxy) 

Prevention of VOCs and 
treatment of other 
complications 

After successful phase I and 
II trials, Phase 3 HOPE trial 
Voxelotor significantly 
increased Hb levels 
compared to placebo and 
reduced markers of 
hemolysis. Exploratory 
post-hoc trial showed that 
Voxelotor resolved or 
improved leg ulcers in 
some patients. 

Inhibition of Hb S 
polymerization. 
Increases the affinity of 
Hb S to oxygen        

http://www.mjhid.org/


 
  www.mjhid.org Mediterr J Hematol Infect Dis 2020; 12; e2020010                                                         Pag. 8 / 24 

 

FT-4202 
Pyruvate Kinase 
Activator (PKR) 
 

Forma 
Therapeutics, 
Inc.; Medpace, 
Inc. 
 
 

An oral small-molecule 
agonist of pyruvate kinase 
red blood cell isozyme 
(PKR) 

Treatment of hemolytic 
anemias Phase I Agonist of pyruvate 

kinase enzyme 

Niacin (Vitamin 
B3) AbbVie Ltd C6NH5O2 

Reduces risk of heart 
disease, improves blood 
flow in people with SCD 

Phase II study completed 
for SCD 

Increases levels of HDL 
and improves blood 
flow 

Cholecalciferol 
(Vitamin D3) 

Numerous 
companies  25-Hydroxyvitamin D3 Vitamin supplement, 

SCD 

Phase study with adult 
patients with SCD 
completed. Phase I and II 
completed 
with pediatric patients with 
SCD. Phase III for pediatric 
patients with SCD not yet 
recruiting 

Supplementary vitamin 

ADP: Adenosine diphosphate; ED = Emergency department; Hb: Hemoglobin; HDL = High-density lipoproteins; kDa: Kilodalton; NO: 
Nitric oxide; RBC: Red blood cell; SCA: Sickle cell anemia; SCD: Sickle cell disease; VOCs: Vaso-occlusive crises. 

 
showed increased microvascular flow and reduced 
adhesion of leukocytes to the endothelium.26 ICAM-4, 
another RBC membrane protein, which participates in 
adhesion, can be activated by epinephrine to adhere to 
endothelial membrane and exacerbate vaso-occlusive 
disease and also increased leukocyte adhesion to 
endothelium.27 When treated with propranolol (a b-
adrenergic receptor antagonist) VOCs were 
diminished.28,29 

In addition to adherence to endothelial cells, RBCs 
in SCA also adhered strongly to leukocytes in VOCs 
via interactions with P-selectin and E selectin. This 
interaction is propagated by TNF-a. Selectins function 
in adhesion to the vessel wall by recruiting rolling 
particles and cells and also contribute to cell activation. 
Patients with SCD have chronic elevation of 
proinflammatory cytokines at baseline, including C-
reactive protein, TNF, IL-1 and IL-8. Damaged RBCs, 
activated endothelial cells, leukocytes and platelets 
(PLTs) contribute to a proinflammatory environment. 
Sickled RBCs stimulate endothelial cells to release 
TNF-α and IL-1β. There is increased production of 
placental growth factor, which activates monocytes to 
release reactive oxygen species (ROS), which enhances 
inflammation. 

Additionally, invariant natural killer T (iNKT) cells 
are activated in patients with SCD, suggesting that 
iNKT cells may play a critical role in mediating 
inflammation. Intravascular hemolysis results in 
release of cell-free Hb in plasma, and hemin release 
that contribute to the inflammation.25,30 Nitric oxide 
(NO) is produced by the endothelium from arginine 
and causes vasodilation by binding to endothelin-1, a 
vasoconstrictor. Intravascular hemolysis releases Hb, 
which scavenges NO in the plasma and subendothelial 
spaces. 

Depletion of NO leads to vasoconstriction and 
formation of ROS. Nitric oxide also downregulates 
adhesion molecules, VCAM-1, ICAM-1 and E-selectin. 
Erythrocyte arginase released during hemolysis 

decreases arginine levels and decreases NO production. 
The byproducts of these reactions, urea, proline, 
polyamines and free radicals, cause vascular 
remodeling and vasculopathy. Patients with SCD have 
elevated asymmetric dimethylarginine, which inhibits 
arginine transport and promotes endothelial 
dysfunction.17,31,32 

These inflammatory processes activate the 
coagulation cascade. Phosphatidylserine expression on 
RBC surface and microparticles activates tissue factor 
and, in turn, the extrinsic coagulation cascade. Tissue 
factor also promotes inflammation and endothelial 
damage. In preclinical studies in transgenic sickle mice, 
lowering tissue factor levels resulted in lower plasma 
levels of IL-6 and soluble VCAM-1.33 Sickle cell 
disease is a chronic inflammatory state and ROS are 
increased at baseline compared with normal controls. 
Hemolysis releases Hb, and iron products, which 
increase ROS that generate superoxide (O2-) and 
peroxynitrate (ONOO-), which promotes an 
inflammatory response and causes cell death. Patients 
with SCD have impaired buffer system with decreased 
glutathione, and other antioxidants.34-36 
 
Approved Pharmacotherapeutic Drugs. The ideal 
drug for SCD would have analgesic properties, be able 
to prevent VOCs or abort them with a rapid onset of 
action, would decrease the severity and frequency of 
VOCs, have limited hazardous side-effect profile and 
be effective in all patients, and available globally. 
Currently HU, L-glutamine, Crizanlizumab tmca and 
Voxelotor shown in Table 2, are the only agents that fit 
some of these criteria and are approved by the FDA.  
 
Hydroxyurea. Hydroxyurea has many qualities of the 
ideal drug for SCD.  It was first synthesized in 1869 
and used in myeloproliferative disorders. Chemically it 
is a synthetic urea analog; also referred to as 
hydroxycarbamide (HC) that functions as an 
antineoplastic agent. In this review HU and HC are 
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used synonymously. There is seemingly a tendency to 
use the HU acronym in the US and HC acronym in the 
UK.  Hydroxyurea was identified as a potent Hb F 
inducer and was subsequently found to be both a 
feasible and effective treatment option for SCA.13 It 
decreases the frequency of VOCs, acute chest 
syndrome (ACS), and the frequency of blood 
transfusion. In addition, HU improves the quality of 
life and decreases mortality in patients with SCA.37 
However, HU is not effective in about 25% of those 
with SCA, an acronym that also includes sickle-β0-
thalassemia (S-β0-T).38 Currently, it was found to be 
teratogenic and possibly carcinogenic in animal 
studies39 but not in humans so far. It was the first 
pharmacotherapeutic drug to be approved by the FDA 
and by the European Medicines Agency (EMA) for the 
treatment of SCA. 

Hydroxyurea is cell cycle specific for the S phase 
and inhibits DNA synthesis as a ribonucleotide 
reductase inhibitor. It induces the production of Hb F 
in the majority of patients with SCA who are compliant 
with therapy and thus prevents the formation of Hb S 
polymers. 

The molecular mechanisms by which HU induces 
Hb F production are not fully clear. Proposed 
mechanisms include selectively killing cells in the bone 
marrow, and increasing the number of early erythroid 
progenitors such as fetal erythroblasts that lead to 
production of Hb F. It also reduces the number of 
adhesive reticulocytes40 and circulating inflammatory 
cells such as monocytes and neutrophils. It alters 
circulating monocyte subsets and dampens the 
inflammatory potential of SCD.41,42 It also improves 
RBC deformability.43 More recently, HU was reported 
to have antioxidant activity.44 It appears that patients 
whose high neutrophil and reticulocyte counts decrease 
significantly after HU therapy have a higher increase in 
Hb F levels.3,21,45 In addition, HC affects the plasma 
proteome of children with SCA resulting in reduced 
inflammation and decreased activation of the 
coagulation factors.46 The increased Hb F induced by 
HU decreases the biomarkers of oxidative stress and 
the scavenging of NO in both sickle cell mice and in 
patients with SCD.44,47,48 

 More complex effects of HU involve the 
production of NO, guanylyl cyclase and cGMP 
dependent protein kinase pathway important in 
inducing expression of the γ-globin gene. Additionally, 
HU improves erythrocyte deformability, lowering of 
circulating leukocytes and reticulocytes, and reduces 
hemolysis.3,49,50 Since its first clinical application 
reported in 1984 by Platt et al., many trials were 
performed.51 The Multicenter Study of HU in SCA, a 
placebo-controlled randomized Phase III trial of 299 
adults with severe SCA, terminated early due to 
significant reductions in frequency of VOC, ACS, need 
for blood transfusion and delayed onset of first 

VOC.52,53 This study led to the FDA approval of HU 
for therapy on February 25, 1998 for moderately or 
severely affected adults with SCA. The Pediatric 
Hydroxyurea Phase III Clinical Trial (BABY HUG), 
involving infants with SCA randomized either to HU 
(fixed dose 20 mg/kg/day) or placebo. This trial 
showed that HU did not clearly prevent organ damage, 
the primary endpoint of the 2-year treatment period, 
but significantly decreased the secondary endpoints: 
pain, ACS, hospitalizations, and transfusions in 
children.54-59  

Formulations of HU are shown in Table 2. It is 
available as capsules or tablets. Solutions of 100 mg/ml 
or higher can be prepared by pharmacist as needed.60 
The usual staring dose is 15 mg/k/day. This may be 
increased gradually every month as needed to achieve 
the maximum tolerable dose. Some providers maintain 
a dose that increases Hb F to a desirable level before 
achieving the maximum tolerable dose. 

 The common side effects of HU are listed in Table 
5. Toxic effects are dose and time dependent and can 
be prevented by careful monitoring and surveillance. 
Side effects are generally reversible with cessation or 
decrease of the drug dose. Hydroxyurea is 
myelosuppressive and leukopenia is the most common 
manifestation followed by thrombocytopenia and 
anemia. Macrocytosis is common and may mask folic 
acid deficiency, so folic acid supplementation is 
recommended during treatment with HU. Idiosyncratic 
side effects are rare, reversible and more common in 
generic formulations.61 Figure 2 shows an example of 
HU-induced melanonychia.  

Phase IV of the HU study which refers to its use in 
the general population post-approval by the FDA, 
showed a plethora of publications globally addressing 
various aspects of its pros and cons. Most important 
among these are as described below. 
 
a. Adherence to HU Therapy. The BABY HUG 
trial, which demonstrated safety and efficacy of 
 
Table 5.  Side Effects of Hydroxyurea. 
Myelosuppression 
         Leukopenia/Neutropenia 
         Thrombocytopenia 
         Anemia 
Megaloblastic Erythropoiesis 
Idiosyncratic  
         Nausea, Vomiting 
         Stomatitis, Anorexia, Diarrhea 
         Constipation 
         Skin rash Erythema, Pruritus 
         Hair Loss 
         Hyperpigmentation, horizontal & Longitudinal 
Melanonychia 
         Decreased Libido 
         Partial complex seizure 
Long Term Effects 
         Unknown 
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Figure 2. Fingernails of a 38-year-old man with sickle cell anemia and hydroxyurea-induced melanonychia characterized by longitudinal 
(blue arrow) and diffuse (red arrow) bands. From J Blood Disorders Transf. 2013;4:5. Used with permission. 
 
starting HU in infancy contributed to a robust increase 
in HU prescribing for children with SCD.62 
Hydroxyurea use in infants 5-12 months old resulted in 
a better response compared with use in older patients.63 
Moreover, prospective longitudinal follow-up of 
children with SCD treated with HU since infancy was 
highly effective in preventing complications of SCD.64 
Pediatric hematologists strongly recommend the use of 
HU in children with SCD early and frequently.65 

Unfortunately, access to specialist care for 
adolescents and adults with SCD is limited and 
associated with many barriers. Most important among 
these include appointment non-adherence.66 Factors 
that seem to influence these barriers may be provider- 
or patient-related. Thus, patients who felt their 
providers were not listening to their concerns tended to 
be non-adherent to HU therapy.67 

Similarly, at the global level the use of HU for the 
treatment of patients with SCD varied considerably. 
The universal administration of HU to children with 
SCD was successful in Malawi68 but not in Nigeria69 
where concerns about its long-term safety and toxicity 
limited its prescription by physicians and acceptability 
by patients. The major barriers to the use of HU in the 
treatment of SCD in Nigeria included lack of national 
guidelines for the use of HU, concerns for infertility 

and safety profile of HU in pregnancy and lactation.69 
 
b. Hydroxyurea and Stroke. According to the 
Cooperative Study of SCD (CSSCD), stroke occurred 
in 11% of children with SCA younger than 20 years of 
age and 24% of adults by the age 45.70 However, the 
use of transcranial Doppler (TCD) in the Stroke 
Prevention in SCA (STOP 1) trial to identify persons at 
higher risk for ischemic stroke, along with the 
prophylactic management of those patients with 
chronic transfusion (simple or RBC exchange), has 
dramatically reduced the incidence of childhood 
primary stroke to 2% to 3%.71,72 The STOP 2 trial 
determined that regular transfusion for primary stroke 
prevention could not be halted safely, even in patients 
with a normal magnetic resonance angiogram whose 
TCD results have normalized.72,73 

Discontinuation of transfusions after 30 months 
resulted in a high rate of reversion to abnormal TCD 
velocity and stroke.72,73  A number of studies indicate 
that transfusion to prevent the recurrence of strokes 
should be performed indefinitely, even after transition 
to adult programs.74-76 The advent of HU raised the 
possibility if it could replace or decrease the need for 
transfusion to prevent the recurrence of stroke. 
However, the Stroke with transfusions changing to HU 
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(SWITCH) trial and the Transcranial doppler with 
transfusions changing to HU (TWITCH) trial were not 
successful 77,78 and blood transfusion and iron chelation 
therapy remain the better choice for the prevention of 
primary and secondary stroke in patients with SCA. 
Nevertheless, HU treatment of children with SCA is 
associated with more intact brain white matter integrity 
by using quantitative MRI79 and prevents the 
conversion to abnormal transcranial doppler in SCA.80 
The NIH guidelines for the management of SCD 
indicated that if it is not possible to implement a 
transfusion program in children and adults who have 
had a stroke, then HU therapy is recommended.38 

 
c. Hydroxyurea and Leg ulcers. The effect of HU 
on leg ulcers in patients with SCD is controversial, 
though it has been reported to cause leg ulcers in 
patients with myeloproliferative syndromes.81  Data on 
leg ulcers from the Cooperative Study of Sickle Cell 
Disease (CSSCD) identified five risk factors associated 
with leg ulcers in patients with SCD.82 Leg ulcers were 
more common in males and older patients and less 
common in patients with α-gene deletion, high total Hb 
level and high levels of Hb F. Since HU is known to 
increase total Hb level and Hb F, one would expect that 
HU would be protective against the development of leg 
ulcers. Nevertheless, there are anecdotes of leg ulcers 
occurring after therapy with HU and of healed old 
ulcers reactivated after HU therapy.83 de Montalembert 
et al followed a cohort of 101 children with SCD 
treated with HU for a median of 22 months; among 
these only one 18 year-old patient had leg ulcers 23 
months after treatment.84 
 
d. Hydroxyurea: pregnancy and lactation. The 
FDA developed a system to rate medications and drugs 
based on potential benefits and risks to the fetus. Drugs 
are classified into pregnancy categories A, B, C, D, and 
X where A is safe and X contraindicated. Hydroxyurea 
is classified as a category D drug; these drugs have 
positive evidence human fetal risk but use may be 
justified in some circumstances. Because HU, an S-
phase antineoplastic drug, is known to be carcinogenic, 
mutagenic, and teratogenic in animals, a major 
inclusion criterion in the Multicenter Study of HU in 
SCA (MSH) was the use of contraceptives both by 
females and males, to avoid fetal exposure to HU. 
Despite this precautionary measure, some women have 
become pregnant while they or their male partners 
were taking HU. Surviving patients enrolled in the 
original MSH trial for up to 17 years post 
randomization were followed.37 The findings suggested 
that exposure of the fetus to HU did not cause 
teratogenic changes in those pregnancies that 
terminated in live birth, whether full term or 
premature.39 This appears to be true whether the parent 
taking HU was the mother or the father. Safety of HU 

during pregnancy and SCD was also reported in 3 other 
patients.85,86 Safety of HU during pregnancy  was also 
reported in other hematologic disorders.86 
The NHLBI evidence-based SCD guidelines identified 
the safety of HU during gestation and subsequent 
lactation as an important knowledge gap that requires 
further investigation. A clinical trial for that purpose is 
underway.87 

Similarly, breastfeeding is usually  contraindicated 
during maternal therapy with antineoplastic drugs, but 
the evidence of this recommendation for HU is very 
weak.38,88 Current recommendations state that 
breastfeeding should be avoided for at least 3 hours 
after the mother takes HU.89 Currently, clinical trial 
[NCT02990598]: Hydroxyurea Exposure in Lactation 
A Pharmacokinetics Study (HELPS) (HELPS) is 
underway to examine the pharmacokinetics and 
distribution of oral HU when administered as a single 
dose to lactating women.90 
 
L-Glutamine (Endari). L-glutamine is an amino acid 
used in the synthesis of protein. It is the most abundant 
amino acid in human blood.91 The body can usually 
synthesize sufficient amounts of L-glutamine, but in 
some instances of stress, the body's demand for 
glutamine increases, and glutamine must be obtained 
from the diet. Accordingly, it is a non-essential and 
conditionally essential amino acid in humans. Reduced 
glutathione is the primary buffer for reactive oxygen 
species (ROS).  

L-glutamine is metabolized to glutamate, the 
glutathione precursor, and preserves intracellular 
nicotinamide adenine dinucleotide (NAD), which is 
necessary for glutathione recycling. Oral 
supplementation of glutamine in SCD increases the 
NAD redox potential and may reduce sickle 
erythrocyte adhesiveness.32,33 Decreased NAD redox 
potential due to low level of L-glutamine was a major 
mechanism for the presence sickle RBCs under oxidant 
stress conditions.92 Oral glutamine was developed by 
Emmaus Medical for the treatment of short bowel 
syndrome and in SCA and β thalassemia. It decreases 
the resting energy expenditure in children with SCD. A 
multicenter Phase III trial of L-glutamine 
supplementation in 230 children to prevent VOC is 
completed; results wed that the median number of pain 
crises over 48 weeks was lower among those who 
received oral therapy with L-glutamine, administered 
alone or with HU, than among those who received 
placebo, with or without HU.92-95 Two Phase II trials 
are also completed.96,97 

Endari was approved by the FDA on July 7, 2017 to 
reduce the acute complications of SCD in adult and 
pediatric patients 5 years of age and older.98 It is 
available as an oral powder: 5 grams of L–glutamine as 
a white crystalline powder in paper-foil-plastic 
laminate packets. It should be administered orally, 
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twice per day at the dose based on body weight as 
follows: 5 g twice daily for patients weighing < 30 Kg, 
10g twice daily for patients weighing 30-65 Kg and 15 
g twice daily for patients weighing > 65 kg. Side 
effects of Endari included low-grade nausea, 
noncardiac chest pain, fatigue, and musculoskeletal 
pain occurred more frequently in the l-glutamine group 
than in the placebo group. There are no available data 
on Endari use during pregnancy and lactation. 

The efficacy of L-Glutamine in the management of 
SCD awaits the data generated in phase IV post 
approval in the general population of patients with 
SCD. 

 
Crizanlizumab tmca (ADAKVEO). The efficacy of 
SelG1 (Crizanlizumab), a humanized anti-P-selectin 
monoclonal antibody, in preventing VOCs was 
evaluated in Phase II SUSTAIN trial in combination 
with or without HU.99 Crizanlizumab intravenous 
therapy resulted in a significantly lower rate of sickle 
cell-related VOCs than placebo and was associated 
with a low incidence of adverse events.99 The FDA 
approved crizanlizumab-tmca (ADAKVEO, Novartis) 
on November 15, 2019 to reduce the frequency of 
VOCs in adults and pediatric patients aged 16 years 
and older with SCD.100 The recommended dose is 5 
mg/kg intravenously over a period of 30 minutes on 
week 0, 2, and every 4 weeks thereafter. The most 
common side effects (>10%) were nausea, arthralgia, 
back pain, and pyrexia. 
 
Voxelotor (Oxbryta, GBT440). Voxelotor is an 
inhibitor of Hb S polymerization indicated for the 
treatment of SCD in   adults and children 12 years of 
age and older. It exerts its action by biding to the 
amino acid terminal of both α chains of Hb. The 
efficacy and safety of Voxelotor (OXBRYTA) in SCD 
was evaluated in a Phase III randomized, double-blind, 
placebo-controlled multicenter trial in combination 
with and without HU (HOPE Trial).101,102 It was 
approved by the US FDA on November 19, 2019.103 
The approval was accelerated based on increase in Hb. 
Continued approval for this indication may be 
contingent upon verification and description of clinical 
benefit in confirmatory trial(s).  

Efficacy was based on Hb response rate defined as a 
Hb increase of >1 g/dL from baseline to Week 24 in 
patients treated with OXBRYTA 1,500 mg versus 
placebo. The response rate for OXBRYTA 1,500 mg 
was 51.1% (46/90) compared to 6.5% (6/92) in the 
placebo group (p < 0.001).  

Recommended dosage of OXBRYTA is 1,500 mg 
orally once daily with or without food.  Recommended 
dosage for severe hepatic impairment is 1,000 mg 
orally once daily with or without food. The daily dose 
of OXBRYTA has to be adjusted in the presence of 
concomitant medications. Thus, in the presence of 

strong CYP3A4 inhibitors or fluconazole, the dose 
should be decreased to 1000 mg once daily. On the 
other hand, in the presence of strong or moderate 
CVP3A4 inducers the recommended dose should be 
increased to 2,500 mg once daily.103 

 
Pending Pharmacotherapeutic Drugs for the 
Treatment of SCD. Currently, there are at least 50 
unapproved pharmacotherapeutic drugs that were or 
are being used or tried to treat SCD during the last two 
decades. Most of these were multicenter randomized 
double-blind placebo-controlled trials to prevent or 
treat sickle painful VOCs. Preventive pharmacotherapy 
includes drugs that are taken routinely as outpatients 
with the hope that may decrease the frequency of 
VOCs that require treatment in the emergency 
department or hospital. Therapeutic pharmacotherapy 
includes drugs that are administered after admission to 
the hospital with the hope that they may abort the VOC 
and decrease the length of hospital stay and the amount 
of analgesics used. Twenty-two of these drugs, shown 
in Table 3, failed, discontinued or terminated. 

Among the 22 drugs listed in Table 3, Rivipansel 
sodium (GMI-1070), has an interesting history that 
demonstrates the steps a drug has to go through in 
order to achieve approval. It is a small-molecule pan-
selectin inhibitor that binds to E, P and L selectin that 
was developed by Glycomimetic to target 
inflammation in sickle VOCs. It improves blood flow 
by inhibiting E-selectin and neutrophil activation. A 
randomized, double-blind, placebo-controlled Phase II 
trial in 76 subjects hospitalized for sickle cell VOC 
assessing GMI-1070 is complete. Data showed that the 
patients treated with rivipansel sodium experienced 
reduction in duration of VOC, length of hospital stay 
and reduction in the use of opioids for pain relief. Both 
adult and pediatric patients demonstrated improvement 
and adverse event rates were comparable between 
rivipansel sodium and placebo.104,105 However, Phase 
III of the study failed. 

Failure of the 22 drugs listed in Table 3 teaches us 
at least two important lessons. First, most of the drugs 
that went through phase III trials failed to treat or abort 
VOCs or ACS. The approved drugs prevented or 
decreased the frequency of VOCs. The second lesson is 
that hydration of sickle RBC does not seem to be an 
adequate approach in the management of SCD. In the 
last 2-3 decades hydration of sickle RBC was one of 
the major approaches to treat SCD. The phase III 
Senicapoc trial showed that hydration of sickle 
erythrocytes is counterproductive. This study 
concluded that hydration of sickle RBC improves their 
survival which, in turn, increases the blood hematocrit. 
Consequently, higher hematocrit is associated with 
increased blood viscosity that promotes vaso-occlusion 
and the precipitation of a new VOC. 

The remaining 28 drugs that are not approved by the 
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FDA so far but are being used in different stages of 
clinical trials to prevent or treat VOCs are listed in 
Table 4 and discussed below. The mechanism of action 
of these drugs includes Hb F induction, inhibition of 
cellular adhesion, anti-inflammatories, surfactants, 
anti-platelets, vasodilators, anti-adhesives, inhibition of 
Hb S polymerization, etc. It is rather unfortunate that 
the majority of these drugs as well as HU were 
developed for indications other than SCD. This is 
unlike other rare diseases such as hemophilia and 
cystic fibrosis for which a few, if any, repurposed 
drugs are used. The reasons for this disparity are not 
known. The complex pathophysiology of SCD, its 
protean clinical manifestations and the suboptimal 
interest from funders and scientists may be some of the 
reasons. 

 
Potential Pharmacotherapeutic Drugs for the 
Treatment of SCDl. 
a. Targeting Hb F production: Decitabine is an 
intravenous cytosine analog 5-aza-2’-deoxycytidine, 
which hypomethylates DNA by inhibiting DNA 
methyltransferase. It is approved for treatment of 
myelodysplastic syndrome. It increases fetal Hb by 
reactivating the silenced γ-globin through 
hypomethylation at its promoter site. In a small study 
of eight patients refractory or intolerant to HU, it 
increased Hb F and Hb levels when administered 
subcutaneously.106 Ongoing trials will further clarify its 
efficacy and tolerability. A Phase II study with planned 
enrollment of 40 patients with high-risk SCD is 
recruiting.107 A Phase I combination study of oral 
decitabine with tetrahydrouridine,108 a competitive 
inhibitor of cytidine deaminase, is also recruiting and 
its aim is to evaluate oral bioavailability of decitabine 
in combination therapy.109,110 

Pomalidomide is an orally active thalidomide 
analog developed by Celgene for the treatment of graft 
versus host disease, SCA, myelofibrosis, scleroderma 
and idiopathic pulmonary fibrosis. Preclinical studies 
showed that it induced Hb F production in an SCD 
model with similar efficacy as HU. Surprisingly, 
pomalidomide improved erythropoiesis in comparison 
to myelosuppression seen with HU. However, when 
given in combination with HU, this effect was lost and 
fetal Hb levels were suppressed.111 A Phase I study of 
pomalidomide in SCD was completed. Twelve patients 
enrolled and data have not been published.112 

Panobinostat is a recently approved histone 
deacetylase (HDAC) inhibitor.113 A study of 
panobinostat in patients with SCD is active but not 
recruiting yet.114 L-arginine, a substrate for NO, was 
evaluated in combination with HU in a small 
randomized trial of 21 adult patients with SCD. There 
was a greater response in fetal Hb levels and 
reticulocyte count in the group receiving combination 
therapy versus HU alone. This study suggests that fetal 

Hb synthesis depends on NO effect on erythroid 
progenitors.115 

 
b. Targeting adhesion: Intravenous Ig (IVIg) also 

inhibits leukocyte adhesion and activation by binding 
to FcγRIII expressed on neutrophils.116 A Phase I/II 
trial is currently recruiting to evaluate Gamunex 
(Intravenous gamma globulin) versus normal saline in 
sickle cell acute pain.117 

Low-molecular weight heparins (LMWH). In a 
randomized clinical trial of 253 patients, Tinzaparin, an 
LMWH, showed reduced duration of VOC and no 
severe bleeding complications.118 These results need to 
be validated in a multicenter study. A recent Phase II 
trial of an oral P-selectin inhibitor (pentosan 
polysulfate sodium) similar to heparin but with greater 
P-selectin blocking ability than heparin showed 
improved microvascular flow in SCD patients in a 
Phase I study.119 Another LMWH, Dalteparin, was 
used in a completed phase II trial.120 

Crizanlizumab. The efficacy of SelG1 
(Crizanlizumab), a humanized anti-P-selectin 
monoclonal antibody, in preventing VOC was 
evaluated in five different trials. The first was the 
successful SUSTAIN trial that was approved by the 
FDA on November 15, 2019 as described above. The 
remaining four trials are as follows:  
• The STAND trial whose purpose is to compare the 

efficacy and safety of 2 doses of crizanlizumab (5.0 
mg/kg and 7.5 mg/kg) versus placebo in adolescent 
and adult SCD patients with a history of VOCs 
leading to healthcare visit.121 

• The SPARTAN trial to evaluate the safety and 
efficacy of crizanlizumab in SCD related 
priapism.122 

• Phase II CSEG101B2201 study is to confirm and to 
establish the appropriate dosing and to evaluate the 
safety in pediatric patients ages 6 months to <18 
years with a history of VOC with or without HU, 
receiving ranibizumab for 2 years. The approach is 
to extrapolate from the PK/pharmacodynamics 
already established in the adult population. The 
study is designed as a Phase II, multicenter, open-
label study.123 

• Phase II multicenter open label study to determine 
the pharmacokinectics and pharmacodynamics 
study of SEG101 (criznalizumab) in SCD patients 
with VOCs.124 
Propranolol significantly reduced RBC adhesion in 

a dose-dependent manner. Adverse events were not 
severe, did not vary with the dose administered and no 
elevation in heart rate was noted. These results imply 
that β-blockers have a potential role in inhibiting RBC 
adhesion.125 A Phase II study of propranolol in SCD 
has been completed and no data have been reported at 
the time that this manuscript was written.126 
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Figure 3: Randomized phase 2 trial of Regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. From Blood Adv. 
2017;1(20):1645-9. Used with permission. 

 
c. Targeting inflammation 

Regadenoson. In SCA patients there is increase in 
the number of activated Invariant Natural Killer T 
(iNKT) cells. Regadenoson is an A2A receptor agonist 
that reduces the iNKT cells activation and thus 
decreases inflammation (Figure 3). It was developed 
by CV Therapeutics, now Gilead Sciences, as an 
adjunct in cardiac perfusion imaging. A Phase I study 
in 27 adults with SCD showed a 48% decrease in 
activation of iNKT cells compared to baseline after 
Regadenoson was administered with no toxicities 
identified.127 Randomized phase 2 trial of Regadenoson 
for treatment of acute VOCs in SCD did not reduce 
iNKT cell activation to a prespecified level when 
administered to patients with SCD. Since iNKT cell 
activation was not reduced, the benefit of iNKT cell-
based therapies in SCD cannot be determined.128 
Further studies may be needed. 

NKTT-120 is an investigational drug developed by 
NKT Therapeutics to treat the symptoms of SCA. It is 
a humanized monoclonal antibody designed to target 
iNKT cells. Preclinical studies showed rapid and 
sustained iNKT cell depletion in adults with SCD after 
the administration of NKTT-120. Depletion of iNKT 
cells had no effect on other natural killer cells. The T-
cell antibody response was not impaired in response to 
a Keyhole Limped Hemocyanin (KLH) challenge.129 
An open-label, multi-center, single-ascending-dose 
study of NKTT120 to determine its pharmacokinetics, 
pharmacodynamics and safety in patients with SCA in 
the steady state showed rapid, specific and sustained 
iNKT cell depletion without any toxicity or attributed 
serious adverse events.130 

Statins. The vascular injury seen in SCD has been 
described to share similarities with that of 
atherosclerosis. Statins decrease inflammation and 
improve endothelial function in cardiovascular disease 

and are under study in SCD. They slow the production 
of cholesterol in the body that may build up on the 
walls of the arteries and block blood flow to the heart, 
brain, and other parts of the body. A pilot study of 26 
patients treated with atorvastatin showed a dose-related 
decrease in inflammatory biomarkers (C-reactive 
protein and IL-6 levels) and increased NO metabolite 
levels.131 A Phase II trial of atorvastatin to determine 
its effect on blood vessels in patients with SCD was 
first posted in November 2012. The primary hypothesis 
is that endothelial dysfunction is an important 
contributor to the pathophysiology of albuminuria in 
SCD. The investigators propose that atorvastatin will 
improve endothelial dysfunction, decrease levels of 
soluble fms-like tyrosine kinase-1 (sFLT-1), and 
decrease albuminuria in patients with SCD. The study 
was completed on November 14, 2019. Results not 
available yet.132 

Zileuton. Sickle cell disease patients have elevated 
levels of 5-lipoxygenase, a potent inflammatory 
leukotriene. Zileuton, a specific inhibitor of 5-
lipoxygenase, is FDA approved for asthma. Beneficial 
effects in the SCD animal model have led to a 
completed Phase I trial in SCD. It showed that higher 
dose of Zileuton was safely tolerated by SCD patients 
with good compliance.133 

N-acetylcysteine.  N-acetylcysteine (NAC) is an 
inexpensive amino acid derivative that replenishes 
intracellular levels of the glutathione and it is the rate-
limiting substrate for glutathione generation, an 
important antioxidant with pleiotropic effects on 
inflammation.134 NAC inhibits dense cell formation and 
restores glutathione levels toward normal, which 
enables the cell to fight damage from ROS. It was used 
30 years ago as a mucolytic agent in cystic fibrosis and 
asthma. In the oral and parenteral routes, it treats 
acetaminophen toxicity. In pilot studies, the 
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administration of NAC resulted in a reduction of 
oxidative stress. A Phase II, double-blind, randomized 
clinical trial was completed to determine the efficacy 
of NAC in decreasing dense cell and irreversible sickle 
cell formation and VOC episodes in SCD. NAC 
inhibited dense cell formation, restored glutathione 
levels toward normal and decreased VOC episodes.135 
A Phase III trial is underway.136 

Canakinumab. Canakinumab has already been 
approved by the FDA in 2009 as ILARIS, an 
interleukin-1β blocker indicated for the treatment of 
Cryopyrin-Associated Periodic Syndromes (CAPS), in 
adults and children 4 years of age and older including: 
Familial Cold Autoinflammatory Syndrome (FCAS) 
and Muckle-Wells Syndrome (MWS).137 Because of its 
anti-inflammatory potential it is being considered in a 
study to determine its efficacy, safety and tolerability 
in pediatric and young adult patients with SCA.138 

A recent presentation at the 2019 American Society 
of Hematology annual meeting described a  multi-
center, randomized, parallel group, double-blind, 
placebo-controlled trial that recruited patients with 
SCA (HbSS or HbS/ß0thalassemia) with history of ≥2 
major pain episodes/year, screening baseline detectable 
pain (using pain e-diaries) and serum high sensitivity 
CRP level ≥1.0 mg/L. Patients were randomized with 
1:1 ratio to receive six monthly subcutaneous injections 
of either canakinumab 300 mg (4 mg/kg for patients 
≤40 kg) or placebo. The concurrent use of hydroxyurea 
was a stratification factor at randomization. Outcomes 
were measured at baseline and at weeks 4, 8, 12, 16, 20, 
24, after which all patients moved to open label 
canakinumab treatment for additional 6 months. 

Interim analysis for futility and safety was 
performed on the first 30 enrolled patients 
(canakinumab, n=16; placebo, n=14), of whom 26 
patients completed the Week 12 assessments 
(canakinumab, n=14; placebo, n=12), and 13 patients 
completed the Week 24 assessments. Enrolled patients 
(median age 17 years, range 12-20; 19 males, 11 
females) were evenly distributed in the arms of the 
study. Results showed that Futility criteria were not 
met and no canakinumab-associated safety issues were 
identified in this first interim analysis. A second 
interim analysis is pending.139 

Ambrisentan. Ambriseentan (Letairis) is an 
endothelin receptor antagonist which has already been 
approved by the FDA in 2007 for the treatment of 
pulmonary arterial hypertension (PAH) (WHO Group 
1): To improve exercise ability and delay clinical 
worsening.  In combination with tadalafil to reduce the 
risks of disease progression and hospitalization for 
worsening PAH, and to improve exercise ability. 
Preliminary data about its potential role in SCD 
suggest that These data suggest that endothelin receptor 
blockade is safe, well tolerated and has the potential to 
impact various aspects of disease pathophysiology in 

SCD.140-142 
 

d. Targeting oxidative Injury 
𝛼𝛼-Lipoic acid.  Alpha-lipoic acid (ALA) is a potent 

antioxidant that is employed in the treatment of several 
diseases. It augments cellular stress response by 
increasing the transcription of antioxidant genes, 
decreasing NF-kB, and increasing glutathione synthesis. 
Acetyl-l-carnitine is an essential nutrient that facilitates 
the entry of long-chain fatty acids into the 
mitochondria and decreases lipid peroxidation in tissue. 
α-Lipoic acid and acetyl-L-carnitine have a synergistic 
antioxidant effect.143 A recent Phase II trial combining 
antioxidants enrolled 42 patients to determine whether 
α-lipoic acid and acetyl-L-carnitine will lower systemic 
inflammation in patients with SCD. This study is 
complete; however, data is not available for review.144 
In an open randomized trial ALA treatment protected 
normal individuals from oxidative damage to lipids and 
proteins. In SCD patients, the dose applied were not 
effective to prevent the oxidative damage.145 Further 
trials are not planned at the present. 

 
e. Targeting anti-coagulation 

Rivaroxaban.  The direct oral anticoagulants 
(DOACs) include Rivaroxaban. Investigational 
therapies targeting multiple pathways are being studied 
for the treatment of SCD. Rivaroxaban, an orally active 
direct Factor-Xa inhibitor and serine protease inhibitor, 
was FDA approved in the US as an anticoagulant for 
prophylaxis and treatment in acute coronary syndromes, 
cerebral ischemia, pulmonary embolism and venous 
thrombosis. It is currently being evaluated in a Phase II 
clinical trial in SCD to reduce inflammation, 
coagulation and endothelial cell activation, and 
improve microvascular blood flow in patients during 
the non-VOC steady state.146 

 

f. Targeting vasodilatation. 
Arginine. Arginine is depleted in hemolysis due to 

the release of arginase and leads to decreased NO 
formation. In SCD patients with pulmonary 
hypertension, arginine supplementation increases 
plasma NO and rapidly decreases pulmonary artery 
pressure by 15%.147 A recent randomized, double-blind, 
placebo-controlled study of high-dose arginine 
supplementation in hospitalized SCD patients with 
VOC was completed and found a > 56% reduction in 
opioid use in patients receiving arginine compared with 
controls.148 A Phase II, randomized trial in 38 children 
showed a significant reduction in opioid use and lower 
pain scores at discharge in those treated with arginine 
in comparison to the placebo arm. There was no 
significant difference in hospital length of stay and no 
toxicity was noted.149 A study was completed in 
children with SCD to evaluate the effectiveness of 
arginine at increasing NO levels, improving RBC 
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function and reducing hospitalizations and pain 
medication use. This was done by measuring gardos 
channel activity, mean corpuscular Hb concentration 
(MCHC) and NO levels. There was only statistically 
significant difference in low-dose arginine with 
decreased MCHC versus placebo. Data is available but 
has not been published.150 Other studies have been 
completed and awaiting analysis and two are currently 
recruiting.151-154 

Inhaled NO. As mentioned before NO failed as a 
therapeutic agent for hospitalized patients with SCD 
and VOC.155 Interestingly, the use of inhaled NO in the 
emergency department significantly reduced pain 
scores compared with placebo (P < 0.02) at the end of 
NO inhalation although both groups had similar 
baseline pain scores.156,157 Moreover, NO has been 
reported to reduces sickle Hb polymerization.158 

PF 04447943 (Phosphodiesterase 9A Inhibitor). A 
randomized, double-blinded, Phase 1b trial [159] at 18 
centers in the U.S. and Europe evaluated the safety and 
tolerability of PF-04447943 over 29 days in people 
with stable SCD. Multiple doses of PF-04447943, with 
or without HU, administered to patients with SCD were 
generally well tolerated and showed 
pharmacodynamics parameters suggestive of a 
protective effect against vaso-occlusion. In addition, 
possible biomarkers to measure efficacy for use in 
future SCD studies were noted.160 Inhibition of PDE9A 
is required to treat diseases that lower the level of 
cGMP which, in turn, regulates signal transduction161 

and mediates vasodilatation. 
IMR-687 is a highly selective, potent inhibitor of 

phosphodiesterase 9. It has a multimodal mechanism of 
action that acts primarily on RBC and has the potential 
to act on white blood cells, adhesion mediators and 
other cell types that are implicated in SCD. Currently, 
it  is an open-label extension study in adult patients 
with SCA who were previously participants in the 
Phase 2a study titled "A Phase 2a, Randomized, 
Double-Blind, Placebo-Controlled Study of IMR-687 
in Adult Patients with SCA”.162 This open-label 
extension study will evaluate the long-term safety and 
tolerability of IMR-687 in adult SCA patients. 
Exploratory long-term parameters will also be 
examined.  

Riociguat is used in a Phase 2 multi-center, 
randomized, double-blind, placebo-controlled, parallel 
groups study aimed to evaluate its safety, tolerability 
and efficacy compared with placebo in patients with 
SCD.163 

Olinciguat is use in the STRONG SCD in patients 
with SCD. The primary aim of the study is to evaluate 
the safety and tolerability of different dose levels of 
Olinciguat compared with placebo when administered 
daily for approximately 12 weeks to patients with 
stable SCD. Exploratory objectives include evaluation 
of pharmacokinetic as well as evaluation of its effect 

on symptoms of SCD, health-related quality of life, and 
biomarkers of pharmacodynamic activity.164 

 
g. Targeting Polymerization 

Voxelotor (OXBRYTA), previously known as 
GBT440, has the potential to selectively bind to Hb, 
and increase its affinity for oxygen. It also inhibits Hb 
polymerization and prevents RBCS from becoming 
deformed. This should restore normal RBC function 
and oxygen delivery. It should also help reduce the risk 
of VOCs caused by sickle cells blocking blood vessels. 

Voxelotor is oral, once-daily drug that binds to the 
α-chain of HbS, stabilizing the molecule in the R-state 
conformation, which is known to interrupt HbS 
polymerization.101,165,166 The target for HbS 
modification with voxelotor is 20%-30%. In phase 1/2 
trials, Voxelotor inhibited HbS polymerization, RBC 
sickling, and hemolysis, with a consequent increase in 
Hb concentration, while also demonstrating an 
acceptable safety profile and was well tolerated.167 
Phases 1/2 completed and Phase 3 randomized, 
placebo-controlled HOPE trial involving patients with 
SCD, Voxelotor (1500 mg and 900 mg) significantly 
increased and sustained Hb levels compared to placebo 
and reduced markers of hemolysis. These findings are 
consistent with inhibition of HbS polymerization and 
indicate a disease-modifying potential. The secondary 
endpoints pertaining to frequency of VOC, 
hospitalization stay, etc. we’re not significantly 
different from placebo. Moreover, exploratory post-hoc 
trial showed that Voxelotor resolved or improved leg 
ulcers in some patients. The new drug application 
(NDA) for Voxelotor is currently under priority review 
by the FDA which provides for a six-month review, 
and has been assigned a Prescription Drug User Fee 
Act (PDUFA) target action date of February 26, 2020. 

Besides the HOPE trial, Voxelotor is being 
considered for other future trials. These include the 
following: 
• Hemoglobin oxygen affinity modulation to inhibit 

Hb S polymerization (HOPE-KIDS 2, GBT 440-
032) trial. The objective of this trial is to investigate 
the effect of Voxelotor on Transcranial Doppler 
(TCD) flow velocity in pediatric patients with SCD 
with conditional TCD. 

• Actigraphy improvement with Voxelotor (Active) 
trial. The objective of this trial is to assess the 
impact of Voxelotor on physical activity, sleep 
quality, and overall patient wellbeing in individuals 
with SCD. Part 1 of this trial will be a phase 4 open-
label, single-arm, within-subject comparison 
followed by Part 2 trial which is a randomized 
withdrawal placebo-controlled trial.  
FT-4202 (PKR Activator). FT-4202 is a selective 

RBC pyruvate kinase-R activator (PKR) to be used as a 
modifying therapy for the treatment of SCD. Its 
mechanism of action includes activating the RBC’s 
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natural PKR activity to decrease 2,3-DPG levels which 
results in shifting the oxygen dissociation curve to the 
left causing Hb to hold on to oxygen molecules longer 
to decrease RBC sickling. In addition, the downstream 
action of FT-4202 increases ATP levels that provide 
energy to RBCs health and survival. These effects 
would increase Hb levels and possibly decrease the 
frequency of VOCs.168,169 

 
h. Targeting Supplements 

Niacin (Vitamin B3).  Niacin is a drug that has been 
used to increase high density cholesterol (HDL), the 
“good cholesterol”. It improves the blood flow in 
people with SCD.170 

Niacin, a drug that has been used to increase HDL 
(good cholesterol) levels, improves blood flow in 
people without SCD. This study will see if it can do the 
same in people with the disease. 

Cholecalciferol (Vitamin D3).   About 98% of 
patients with SCD have vitamin D deficiency, defined 
as a 25-hydroxyvitamin D level (25(OH)D) less than or 
equal to 20 ng/mL. As a result of low bone density, 
patients may develop osteonecrosis, chronic 
inflammation and related pain.171 Since vitamin 
D regulates calcium levels and supports bone health, its 
deficiency may worsen musculoskeletal health 
problems already present in people with SCD. 
However, a Cochrane review study showed that the 
evidence for vitamin D3 supplementation in patients 
with SCD is not of sufficient quality to guide clinical 
practice. Evidence of vitamin D supplementation in 
sickle cell disease from high quality studies is 
needed.172 
 
Conclusions. There has been tremendous advance in 
our knowledge of the pathophysiology of sickle cell 
vascular injury over the past decade resulting in new 
therapeutic targets. The field is witnessing promising 
translational studies hoping to replace or use with HU 
as the primary pharmacologic therapy for patients with 
SCD. This review includes therapies targeting 
increases in fetal Hb and the complex pathways in 
adhesion, inflammation, oxidative damage and 
polymerization. 

Hydroxyurea is an oral agent that has decreased 
morbidity and mortality in adults and children with 
SCA. It decreases recurrent VOCs, ACS and blood 
transfusion requirements, and improves quality of life 
mainly through increasing fetal Hb production. It is 
inexpensive and potentially available worldwide. It is 
cytotoxic, which may cause myelosuppression and  its 
carcinogenic effects are unknown and long-term 
studies have failed to document this. Traditionally, it 
has been. contraindicated in pregnancy and during 
lactation due to potential teratogenicity. Recent 
anecdotes and case reports indicated its safety during 
pregnancy and lactation. Its role in pregnancy and 

lactation is currently the subject of clinical trials. It 
seems it should not be taken during the first two 
trimesters of pregnancy. 

L-glutamine is metabolized to glutamate, the 
glutathione precursor, and preserves intracellular NAD, 
which is necessary for glutathione recycling. Oral 
supplementation of glutamine in SCD increases the 
NAD redox potential and may improve sickle 
erythrocyte adhesiveness. Oral glutamine was 
developed by Emmaus Medical for the treatment of 
short bowel syndrome and in SCA and β thalassemia. It 
decreases the resting energy expenditure in children 
with SCD. A multicenter Phase III trial of L- glutamine 
supplementation in 230 children to prevent VOC is 
completed Results showed that the median number of 
pain crises over 48 weeks was lower among those who 
received oral therapy with L-glutamine, administered 
alone or with HU, than among those who received 
placebo, with or without HU. 

Decitabine is an attractive agent as it induced fetal 
Hb with similar disadvantageous risk profile like HU 
with potential myelosuppression, teratogenicity and 
carcinogenicity. It is an already approved therapy for 
myelodysplastic syndrome and acute myeloid leukemia, 
conditions more prevalent in the elderly. It is being 
evaluated in oral form and in combination therapy 
currently and further testing is warranted in the 
pediatric population. Unlike HU, its effect to increase 
Hb F level occurs much sooner than that for HU. N-
acetylcysteine has reached Phase III trials. It targets 
inflammation. A combination with a fetal Hb-inducing 
agent such as HU is a potential strategy to combat SCD. 
Studies involving NO so far have been disappointing in 
the sickle cell population. It is surprising that arginine 
therapy. was more promising than NO since its role is 
to increase NO. Nevertheless, this natural amino acid is 
an ideal agent for a combination regimen. 

In the sickle cell population, there are challenges 
with clinical trial enrollment since it is a relatively rare 
and clinically heterogeneous disease. A paradigm shift 
in clinical trial design would improve outcome. Due to 
the complex pathophysiology of the disease, clinical 
trials targeting a multi-agent approach may be more 
successful as in oncology where combination 
chemotherapy regimens have been more efficacious. 
Trial design in SCD over the past three decades has 
historically incorporated all patients with SCA. 
Recently, this 

approach is being modified to reassess endpoints to 
determine benefits in targeted phenotypes, including 
quality-of-life measures and incorporating biomarkers 
in patient selection. 

In summary, our greater understanding of the 
pathophysiology of SCD has led to many new targets 
for drug therapy, and with a paradigm shift in clinical 
trial design. We are in an exciting position to improve 
care for the millions who suffer from SCD. It is very 
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probable that in the near future we may witness new 
trials to treat SCD that contain two or more drugs that 
have different mechanism of action. My prediction is 
that such trials may have acronyms such as FOC, FOV, 

FOCV, etc. trials where F refers to a drug that 
increases Hb F, O refers to an antioxidant drug, C 
refers to anti-adhesion drug and V to anti-
polymerization drug or other possible combinations.  
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