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Abstract. Deferiprone (L1) was originally designed, synthesised and screened in vitro and in vivo 

in 1981 by Kontoghiorghes G. J. following his discovery of the novel alpha-ketohydroxypyridine 

class of iron chelators (1978-1981), which were intended for clinical use. The journey through the 

years for the treatment of thalassaemia with L1 has been a very difficult one with an intriguing 

turn of events, which continue until today. Despite many complications, such as the extensive use 

of L1 suboptimal dose protocols, the aim of chelation therapy- namely, the complete removal of 

excess iron in thalassaemia major patients, has been achieved in most cases following the 

introduction of specific L1 and L1/deferoxamine combinations. Many such patients continue to 

maintain normal iron stores. Thalassemia has changed from a fatal to chronic disease; also 

thanks to L1 therapy and thalassaemia patients are active professional members in all sectors of 

society, have their own families with children and grandchildren and their lifespan is 

approaching that of normal individuals. No changes in the low toxicity profile of L1 have been 

observed in more than 30 years of clinical use and prophylaxis against the low incidence of 

agranulocytosis is maintained using mandatory monitoring of weekly white blood cells’ count. 

Thousands of thalassaemia patients are still denied the cardioprotective and other beneficial 

effects of L1 therapy. The safety of L1 in thalassaemia and other non-iron loaded diseases 

resulted in its selection as one of the leading therapeutics for the treatment of Friedreich’s ataxia, 

pantothenate kinase-associated neurodegeneration and other similar cases. There are also 

increasing prospects for the application of L1 as a main, alternative or adjuvant therapy in many 

pathological conditions including cancer, infectious diseases and as a general antioxidant for 

diseases related to free radical pathology. 
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Introduction. The haemoglobinopathies, which 

include sickle cell disease and thalassaemia, are a 

major group of genetic diseases affecting humans. It is 

estimated that about 100000 children are born annually 
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with thalassaemia mainly in South-East Asia, the 

Middle East and Mediterranean countries. Most of the 

thalassaemia patients are born in South-East Asia and 

die untreated.1,2  

Thalassaemia is endemic in some countries such as 

Cyprus, where 1 in 6 persons is an asymptomatic 

thalassaemia heterozygote carrier, and about 1 in 1000 

is a thalassaemia major and intermedia patient. The 

prevention and treatment programmes for thalassaemia 

and especially chelation therapy impose a great 

financial burden on the health budget of many 

countries.1,3 

The standard form of treatment of transfusion 

dependent thalassaemia (TDT) is regular red blood cell 

(RBC) transfusions every 1-4 weeks accompanied by 

daily chelation therapy. Multiple transfusions cause 

increased iron deposition and damage to the liver, heart, 

spleen and other organs. Iron overload in thalassaemia 

has the highest rate of morbidity and mortality of metal 

related intoxication in humans. Iron chelation therapy 

in thalassaemia and other transfusional iron loading 

conditions is carried out worldwide using the generic 

drugs deferoxamine (DF), deferiprone (L1) and 

deferasirox (DFRA).4 The combination of chelating 

drugs and especially the L1/DF combination, is also 

widely used in the vast majority of thalassaemia 

patients in Cyprus and also in some other countries.5,6  

There is no worldwide consensus in the use of iron 

chelating drugs or of related protocols in transfusional 

iron loaded patients. In most cases, the selection of 

chelation therapy and related protocols is generally 

‘random’ and based on subjective and other criteria and 

non specific aim. As a result, the selection and use of 

iron chelating drugs vary from country to country and 

from clinic to clinic.7 

The main aim of iron chelation therapy in 

thalassaemia and other iron loaded conditions is the 

achievement and maintenance of normal iron stores, in 

which case patients are devoid of iron overload toxic 

side effects.8 This aim, including the long term 

prevention of iron overload, can be accomplished using 

effective and safe chelation protocols, involving mainly 

L1 and L1/DF combinations.8  

Some of the unique pharmacological properties and 

characteristics of L1 such as the ability to penetrate 

most organs and remove effectively excess iron from 

the heart has resulted in a substantial reduction in the 

mortality rate of thalassaemia.4-6,9,10 Furthermore, the 

ability of L1 to remove excess iron from the brain has 

resulted in the development of L1 as one of the leading 

pharmaceuticals in the treatment of Friedreich’s ataxia, 

pantothenate kinase-associated neurodegeneration 

(PKAN), and other cases of neurodegeneration with 

brain iron accumulation.11-13  

 

Design, Development, and Cost of Deferiprone. The 

design, development, and clinical use of L1 is a unique 

case of academic orphan drug development, which was 

originally based on academic efforts supported mainly 

by a thalassaemia patient/parent charitable organisation, 

namely the United Kingdom Thalassaemia Society 

(UKTS).  

The project on chelation was initiated at the 

University of Essex, UK, while working on 

haemoglobins in 1979 and was partly supported by the 

British Technology Group (BTG) and the UKTS.14,15 

Following a fundamental new approach on iron 

chelation design and testing, a new group of iron 

chelators was discovered by one of the authors- namely 

Kontoghiorghes G J (GJK), and as a result, the new 

classes of alpha-ketohydroxyridines including 1,2-

dimethyl-3-hydroxypyrid-4-one (L1) were synthesised 

and tested at Essex University and University College 

Medical School London (UCH), UK.15,16 The latter was 

selected by GJK and members of UKTS because of the 

in vivo and clinical testing facilities.15-18 

The discovery and iron removal effects of L1 could 

not be published for 5 years due to “embargo” on 

publications by BTG, and in 1985 the UKTS sponsored 

the continuation of the chelation project at the Royal 

Free Hospital Medical School (RF) London, UK from 

where the first publications of the iron removal effects 

of L1 in comparison to parenteral DF in animals were 

reported.19-22  

A significant invention at the RF in 1986 was also 

the one-step novel synthesis of L1 and L1 analogues, 

instead of the 4-step synthesis invented in 1981, which 

overturned the BTG patent monopoly in many 

countries. The one-step synthetic method is currently 

utilised by all manufacturers of L1 worldwide and 

make L1 less expensive than DF and DFRA.23-27 

Deferiprone became a generic drug about 15 years ago, 

and by comparison, its sale price in India, Iran and 

Thailand is about 5-10 times cheaper than that sold in 

western countries.23-27  

A fierce competition against L1 and related 

controversies were in process from the time of the L1 

discovery until today. For example, more than 60 

patents were filed worldwide since the discovery of L1 

and other alpha-ketohydroxyridines.15 The first patent 

application was filed in 1982.15,28 However, due to 

‘policy changes’, BTG has submitted the remaining 

patents under the names of the inventor (GJK) and co-

inventors using an alphabetical order format.29,30 

An analogue of L1, namely 1,2-diethyl-3-

hydroxypyrid-4-one (EL1NEt or CP 94) was promoted 

by BTG sponsored studies at Essex University and 

UCH.31-35 However, based on further studies and 

clinical trials in thalassaemia patients, EL1NEt was 

later abandoned.36-39 Similarly, Ciba Geigy (now 

Novartis) the then manufacturers of DF have also 

carried out animal toxicity studies with L1 and reached 

the conclusion that L1 was toxic.40 However, the 

evaluation methods used for L1, as well as the 
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comparative toxicity data obtained previously with DF 

questioned Ciba Geigy’s conclusions.41 Similar 

controversies continue until today.42-45  

Despite the opposition from different groups, the 

academic initiative and strategy for the development of 

L1 in academic institutions continued and included the 

general phase I to V studies as described for most other 

drugs.45  

 

The First Clinical Trials with Deferiprone and 

Today’s Implications. Approval for the first clinical 

trials with L1 in myelodysplasia and thalassaemia 

patients was obtained in 1987 from the local ethical 

committee of the RF and the Department of Health and 

Social Securities of the UK.46,47 Gelatine capsules were 

used for the oral administration of L1 because of its 

bitter taste (Figure 1).  

In the first two clinical studies, different divided or 

single daily doses of L1 were administered to 11 

patients (10-110 mg/kg/day) to assess efficacy and 

tolerability.46,47 All doses caused a net increase of 

urinary iron excretion (UIE), which was proportional to 

the dose of L1 and the iron load of the patients (Figure 

2). Doses of 75-110 mg/kg/day were identified to cause 

negative iron balance with an increase in UIE greater 

than 25-33 mg, which was equivalent to that caused by 

DF and higher than the intake of iron from RBC 

transfusions.47 No increase in urinary excretion of other 

essential metals (Ca, Zn and Mg) or other toxic side 

effects were reported.46,47 

International multicentre clinical trials were 

organised, following the initial clinical trials in London 

and L1 was supplied in different university clinical 

centres worldwide e.g. Italy, Switzerland, The 

Netherlands, Germany, etc.21 The production of L1 for 

clinical trials was later carried out by private 

companies in India, Switzerland, The Netherlands and 

Canada etc.21  

In 1989 the first episode of agranulocytosis was 

reported, as well as episodes of neutropenia, 

masculoskeletal and joint pains, gastric intolerance, 

and zinc deficiency in the RF, which were also 

confirmed by other centres.48-51 In the same year, no 

similar agranulocytosis episodes were observed in a 

total of 125 other patients who received L1 in 8 other 

countries, as reported in the first international 

conference on oral chelation (1st ICOC) at the RF.49 In 

this context, a mandatory weekly blood count was 

introduced for prophylaxis against agranulocytosis and 

neutropenia similar to the drug clozapine.21  

An application proposing a name for L1 in 1991 by 

the inventor (GJK), resulted in the adoption by the 

World Health Organisation (WHO) of the INN name 

deferiprone (WHO drug information list 67, volume 2 

of 1992). 

There was no interest from major pharmaceutical 

companies for the commercial development of L1.5,40 

 
Figure 1. The first pharmaceutical preparation of encapsulated 

deferiprone (L1). Encapsulated 0.5 g L1 white solid in transparent 

gelatin capsules used for the first clinical trials in London, UK and 

in multicentre clinical trials that followed. No preservatives or 

additives were included in the preparation. This simple formulation 

masked the bitter taste of L1. 

 
Figure 2. Photograph of 24-h urine sample collections from an iron 

loaded thalassemia patient and a myelodysplasia patient both 

treated with 2g of deferiprone (L1). Yellow colour urine is 

observed prior to the administration of L1 and characteristic red 

colour urine (L1-iron complex) is observed following treatment 

with L1. Darker red coloured urine is observed in the thalassaemia 

patient who was more iron loaded than the myelodysplasia patient. 
 

Within this context, India played a leading role in the 

pharmaceutical development of L1. A collaborative 

project initiated between a parent of a thalassaemia 

patient of the Indian pharmaceutical generic company 

Cipla with one of us (GJK), led to the pharmaceutical 

preparation of L1 and also the initiation of clinical 

trials in India.21,50 The first in the world regulatory 

approval for L1 was in India and L1 became available 

to Indian thalassaemia patients in 1995 (Table 1).49,50 

At a later stage, BTG licensed the L1 patents to the 

generic pharmaceutical company Apotex, Canada and 

L1 received regulatory approval from the EU in 1999 

and many other countries worldwide and also from the 

USA in 2011. 

No formal animal or other preclinical toxicology 

studies were carried out on L1 by either Cipla or 
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  www.mjhid.org Mediterr J Hematol Infect Dis 2020; 12; e2020011                                                         Pag. 4 / 17 
 

Table 1. Deferiprone (L1)- the journey across the years . 

1981: Discovery, design, synthesis and physicochemical characterisation of L1.  

1981-1982: Iron binding, protein and cell studies in-vitro. Animal studies. 

1982: Naming of L1 and other alpha-ketohydroxpyridines. 

1983: Patented in the UK. Later patented in the USA, EU and various other countries. 

1982-1986: Intensive chemical, biochemical, cell and animal studies.  

1986: The UK Department of Health grants permission for clinical trials in the UK. 

1987: Simple, cheap synthesis of L1. First-ever clinical trials in London, UK. 

1988: Multicentre clinical trials begin worldwide. 

1989: First publications on joint/musculoskeletal toxicity and agranulocytosis. Introduction of mandatory weekly white blood cell’s count. 

The first International Conference on Oral Chelation (ICOC), in London, UK. 

1990: Characterisation of the pharmacokinetic and metabolic properties of L1 in patients and normal volunteers. 

1992: Approved BAN and INN name for L1. (INN: Deferiprone). 

1994: First ever registration of L1 in India 

1995: Clinical use and multicentre clinical studies continue. 

1998: It was estimated that more 5000 patients in 35 countries have been using L1, some daily for over 12 years. 

1999: Registration of L1 in European, South American and Asian countries. 

2000: The new, simple, one-step synthesis of L1 is patented in Greece. 

2002: Worldwide interest on L1 following MRI findings regarding effective depletion of iron from the heart, which is the main cause of 

death in thalassaemia patients. 

2003: Proposal for the use of L1 in non-iron loaded conditions including Friedreich Ataxia, Parkinson’s and Alzheimer’s diseases, cancer, 

HIV etc.  

2003 – 2019: Clinical trials with L1 in many non iron loaded conditions 

2009: Reduction in morbidity and mortality of thalassaemia patients using L1  

2011: Registration of L1 in the USA 

2019: Deferiprone (L1) is a leading pharmaceutical in the treatment of thalassaemia, Friedreich’s ataxia and pantothenate kinase-associated 

neurodegeneration (PKAN).  

 

Apotex. The absence of such data put L1 at a 

disadvantage as a second line iron chelating drug in 

comparison to DF and DFRA. However, animal 

toxicology data are generally of a similar level of 

toxicity for all three drugs and in clinical practice, L1 is 

widely used to the same extent as the other two 

chelating drugs. In many cases, L1 is regarded as the 

first line iron chelating drug because of its unique 

properties and especially its cardioprotective effects.5-10  

With regards to safety, long term studies, and 

continuous clinical monitoring involving thousands of 

thalassaemia and other categories of patients in the last 

30 years have confirmed the low toxicity of L1.50,51 The 

most severe toxic side effects of L1 still remain the 

same until today and are all controllable, manageable, 

and reversible. These include reversible 

agranulocytosis (1% >) and neutropenia (5% >), while 

less serious toxic side effects include gastric 

intolerance, musculoskeletal and joint pains and zinc 

deficiency.50,51 Toxicity vigilance and prophylactic 

measures are essential steps for ensuring the safety of 

L1 and the other chelators. For example, zinc 

supplements are used for prophylaxis for patients on 

long term treatment with L1, DF and the L1/DF 

combination.21  

Agranulocytosis is the most severe toxic side effect 

of L1 and mandatory monitoring of weekly white 

blood cell count is an essential prophylactic measure 

for its prevention during L1 therapy. Similarly, 

temporary withdrawal of L1 is necessary during the 

sore throat and other infections. The cause of 

agranulocytosis is still unknown but in almost all the 

cases, this L1 toxicity was transient and all the patients 

recovered following treatment with granulocyte-colony 

stimulating factor (G-CSF). The time of recovery of the 

neutrophil count in patients treated with G-CSF varies 

between a few days to 7 weeks.21,48 The mechanism of 

L1 induced agranulocytosis is thought to be related to 

an L1-related immune response against white cell 

progenitors since re-challenge on the same patients 

with L1 results in another episode of agranulocytosis. 

The patients with this L1 toxic side effect have to 

switch to DF or DFRA chelation. 

 

Mechanisms of Chelation and Prevention of Iron 

Toxicity by Deferiprone. The properties and 

mechanisms of chelation by L1 and other chelating 

drugs have been previously reviewed.4,21,22 Three 

molecules of L1 are needed to bind one molecule of 

iron and to form a red colour iron complex similar to 

that shown in the urines of iron loaded patients in 

Figure 2. The small molecular size, neutral charge, and 

hydrophilicity of L1 allow substantial penetration of 

almost all tissues including access to all major organs 

such as the heart and the brain.4,21,22 As a result of the 

extensive   distribution,   L1   can  act   as   a   universal  
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Figure 3. Pharmacokinetic profile of deferiprone (L1) and its 

glucuronide metabolite. Serum monitoring of L1 (white circles) and 

its glucuronide metabolite (dark circles) following the repeated 

administration of 3g of L1 in a 68 kg male thalassaemia patient 

with serum ferritin 2500 μg ⁄L. The timing of oral administration of 

L1 is shown by arrows. Rapid absorption from the stomach of L1 

and elimination from blood in about 6 hours is observed. The 

glucuronide metabolite of L1 is cleared from blood at about 8 hours. 

Adapted from reference 21 (with permission). 
 

 
Figure 4. Iron excretion in response to different doses of 

deferiprone (L1). The urinary and faecal iron excretion profile of a 

male iron loaded thalassaemia patient (40kg, serum ferritin 1200 

μg/ L) treated daily for one week with different doses of L1. The 

level of iron excretion is related to the dose of L1 and almost all of 

the chelated iron is excreted in the urine. 

 

antioxidant in all conditions associated with free 

radical pathology by inhibiting oxidative stress damage 

caused by excess labile iron catalysis of free radical 

production.4,21 

The pharmacokinetics, metabolism and route of iron 

elimination of L1 have also been determined (Figure 

3).21,52-54 Deferiprone is readily absorbed within 

minutes from the stomach, metabolised to a 

glucuronide conjugate, cleared from the plasma within 

6-8 hours, and excreted in the urine in the form of L1 

iron complex, L1 glucuronide conjugate and free L1 

(Figure 3).16,21,52-54 No increase in iron excretion was 

detected in the faeces of iron loaded thalassaemia 

patients treated with L1 (Figure 4).53,55  

Iron mobilisation by L1 depends on the iron load of 

the patients and the dose of L1 (Figure 4).53 The 

increase of UIE in non iron loaded patients is only a 

few mg, which by comparison, is a small fraction of 

what is excreted in iron loaded patients.21,53  

Iron chelation and mobilisation by L1 have been 

shown to occur from all the iron pools in cells 

including ferritin and haemosiderin and also from 

transferrin and NTBI in plasma (Figure 5).4,21,22,56 In 

contrast to the other chelating drugs, only L1 can cause 

the mobilisation of iron from transferrin and prevent 

the accumulation of excess iron in cells (Figure 

5).4,21,22,56 

Many factors can affect the rate of accumulation 

and deposition of iron in the organs of transfused iron 

loaded patients, with the rate of RBC transfusions 

being the primary factor (Table 2). Similarly, many 

factors can affect the rate of iron removal from 

regularly transfused patients with the most important 

being the efficacy of the iron chelation protocol (Table 

2). In this context, the selected chelating drugs and 

dose protocols, as well as other related effects, can 

influence the outcome of chelation therapies (Table 

3).57,88  

There are many variables in the properties and 

mode of action of chelating drugs and the selection of 

any chelation protocol could have a direct effect on the 

mortality and morbidity of thalassaemia patients 

(Table 3).5-10,57-60 Optimum iron chelation therapies in 

the context of personalised medicine in thalassaemia 

patients take into consideration the most effective and 

less toxic monotherapy or combination therapy 

protocols. 61 In this context, for each patient, the dose 

protocols are adjusted with regards to the iron load and 

the efficacy/tolerability of the chelation therapy.61  

The benefits from the selection of a chelation 

protocol could easily be assessed by monitoring the 

levels of the iron load and also organ function. For 

example, the removal of excess toxic iron in 

thalassaemia patients by L1, and the L1/DF 

combination is accompanied with improvement of 

cardiac function, such as elevation of left ventricular 

ejection fraction (LVEF), endothelial function, etc.9,10,62 

Improvements have also been observed in some other 

haematological conditions using L1 but the 

mechanisms have not yet been fully clarified.63-65 

 

Recent Developments on Iron Chelation Metabolic 

Pathways. Congestive cardiac failure due to cardiac 

iron overload toxicity has been the primary cause of 

mortality in iron loaded thalassaemia patients for many 

decades .66,67 Despite that in thalassaemia the diagnostic 

tests previously used routinely for estimating iron 

stores such as serum ferritin and liver biopsies could 

generally reflect body iron stores, neither of these tests 

could reflect cardiac iron load levels.68-70 Furthermore, 
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Figure 5. Iron mobilization from the iron pools of iron loaded cell and plasma by deferiprone (L1). The schematic illustration shows the iron 

loading process of cells and the mode of action of transferrin (Tf) iron deposition via a transferrin receptor (TfR) and non-transferrin bound 

iron (NTBI). Deferiprone may prevent iron accumulation in cells through iron removal from transferrin in plasma (A) and the low molecular 

weight plasma iron pool (LMWtPFe) or NTBI (B). Deferiprone may also mobilize iron from the intracellular low MWt iron pool (LMWtFe) 

(C), ferritin (D) and hemosiderin (E). In conditions like Friedreich’s ataxia, deferiprone (L1) can mobilise excess iron from mitochondria (in 

green). 

 

such information was not sufficient for selecting 

appropriate chelation therapy protocols for effective 

removal of excess iron from the heart.  

However, the relatively recent routine introduction 

of new diagnostic techniques such as Magnetic 

Resonance Imaging (MRI) T2 and T2* which identify 

the level of iron load in the heart, liver, spleen and 

other organs of thalassaemia and other iron overloaded 

patients, has not only increased our understanding of 

transfusional and other iron overload metabolic 

pathways but also the differential effect of chelating 

drugs in iron removal from various organs.60,69-73  

The recent diagnostic procedures, and especially 

MRI T2 and T2* in the determination of iron 

deposition in organs, have increased the prospects of 

improved chelating drug targeting therapies of iron 

overload toxicity, as well as the introduction of 

personalised chelation regimens in thalassaemia and 

other iron overload metabolic disorders.73 Furthermore, 

based on these diagnostic findings the complete 

treatment of iron overload by removing all excess iron 

safely from the heart, liver and other organs of 

regularly TDT patients using L1, the L1/DF or other 

chelator combinations can nowadays be precisely 

monitored (Figure 6). In addition, the safe long term 

maintenance of normal iron stores in thalassaemia 

patients and prevention of chelating drug toxicity can 

also be regularly assessed using monthly monitoring of 

serum ferritin levels, as well as yearly or half yearly 

MRI T2 and T2* measurements. 

The promising results in the treatment of iron 

overload in thalassaemia encouraged investigations for 

the use and development of chelating drugs in many 

other clinical conditions. Such initiatives were within 

the broad context of the risk/benefit assessment of 

therapeutic outcomes in each condition because of the 

absence of other effective therapeutic approaches. Most 

efforts were mainly focused on the use of L1 as
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Table 2. Factors affecting the iron load and iron removal in transfused patients. 

Factors affecting body iron load and distribution 

• Rate of red blood cell (RBC) transfusions. Splenectomy. 

• Rate of iron absorption. Rate of iron excretion. 

• Transferrin iron saturation levels. Non-transferrin bound iron levels.  

• Cardiac iron levels. Heart is the major target organ of iron toxicity and mortality  

• The size and function of the liver and spleen as the major iron storage organs. Organ size, vascularity and iron storage capacity in each 

organ.  

• Rate of hemolysis of RBC. Red blood cell antibodies.  

• Haptoglobin function. Antioxidant capacity. 

• Organ specificity for excess iron uptake and storage eg liver, spleen > bone, brain. 

• Rate of iron deposition and removal in different organs.  

Factors affecting total body and individual organ iron removal 

• Iron chelation therapy and influence on the liver/heart iron levels and serum ferritin. 

• Dose of chelator or chelator combinations and route of administration.  

• Differential iron removal from the iron pools and organs by the chelating drugs.  

• Non-uniform organ distribution of stored iron during chelation therapy and identification of intense iron foci. The principle “last in/first 

out” mobilization of iron deposits by chelators usually apply. 

• Absorption, distribution, metabolism, excretion and toxicity (ADMET) of chelator, iron complexes and metabolites. Chronotherapy 

aspects. 

• Effects of dietary factors, metals other than iron, drugs and nutrients with chelating properties. 

• Drug interactions. Effects of diuretics and coagulants. The effect of other drugs on iron metabolic and chelation pathways.  

• Exercise. Sweating.  

Genetic factors 

• Metallomics, proteogenomics, nutrigenomics, pharmacogenomics related to iron and chelating drug metabolism 

Hormonal function 

• Erythropoietin levels. Erythropoietic activity of the bone marrow. Hepcidin levels. 

• Male/female hormonal activity and secondary events, e.g. iron loss during menstruation and child bearing 

Disease factors affecting organ iron load and redistribution 

• Anaemia. Hypoxia. Inflammation. Malignancy. Infection. 

Genetic and acquired conditions affecting organ iron load 

• Thalassaemia intermedia. Idiopathic hemochromatosis. Atransferrinaemia. Anaemia of chronic disease. Parkinson’s and Alzheimer’s 

diseases with brain iron accumulation. Acute iron poisoning. 

 

a universal antioxidant in non iron overload diseases 

such as neurodegenerative, cardiovascular, renal, 

infectious diseases, as well as other diseases including 

cancer and ageing.74,75 

Recent developments involving the prospects of the 

broader use of chelating drugs have been investigated 

in clinical trials and clinical developments in many of 

these clinical conditions.74,75 In particular, the 

introduction of L1 for the treatment of non iron loaded 

patients with focal toxic iron deposits e.g. in Friedreich 

ataxia and toxic labile iron e.g. in diabetic and non-

diabetic glomerular disease, is a reflection of the 

antioxidant and safety potential of L1.11-13,74,75 As in 

many other cases of drug development, the prospects of 

introduction of L1 and other chelating drugs in these 

diseases are based on commercial and not ethical 

criteria.45 

 

The Paradigm of the Complete Treatment of Iron 

Overload in Thalassaemia. The removal of excess 

toxic iron accumulated from repeated RBC 

transfusions in patients with refractory anaemias was 

the primary aim of all investigations involved with iron 

removal chelation therapy in the last 50 years. In 

general, any form of excess iron is potentially toxic 

because of the ability of iron to catalyse the increased 

production of free radicals and cascades, which can 

cause molecular, subcellular, cellular, tissue, and organ 

damage.15,65 The extent of damage can be reversible or 

irreversible depending mainly on the concentration of 

excess deposited iron and also other factors (Table 2).75 

With the introduction of intramuscular and then 

subcutaneous and intravenous DF in the early 1960’s, it 

became evident that the rate of iron removal by DF was 

not sufficient to compensate for the body iron intake 

from RBC transfusions in the vast majority of 

thalassaemia major patients mainly due to severe 

complications with the parenteral administration of 

DF.66,67,74 Furthermore, serious complications were also 

observed such as neurotoxic and other toxic side 

effects during the use of DF in low iron loaded 

thalassaemia patients and also other categories of
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Table 3. Comparison of the mode of action and effects of chelating drugs. 

Recommended doses for the chelating drugs in thalassaemia major patients:  

DF subcutaneously 40-60 mg/kg/day. Oral L1 75-100 mg/kg/day. Oral DFRA 20-40 mg/kg/day. 78  

Optimal chelation therapy protocol for the normalisation of the iron stores in thalassaemia major patients: 

The ICOC combination dose protocol of L1 (75-100 mg/kg/day) /DF (40-60 mg/kg/day, 3-7 days per week).58,73 

Compliance of iron loaded patients with chelating drugs:  

Low compliance with subcutaneous DF in comparison to oral L1 and oral DFRA.78 

Route of elimination of increased iron excretion in iron loaded patients: 

L1: Urinary iron. DFRA: Faecal iron. DF: Mostly urinary but also faecal iron. 53,55,133 

Effect of chelating drugs on iron absorption:  

Increase of iron absorption by the lipophilic maltol, 8-hydroxyquinoline and DFRA. Decrease of iron absorption by the hydrophilic DF, 

EDTA, DTPA and L1.20, 134-136 

Iron removal from diferric transferrin and NTBI in iron loaded patients: 

Effective transferrin iron removal only by L1 (estimated 40% iron removal from diferric transferrin at L1 concentrations > 0.1 mM), but 

not by DF or DFRA. 15, 52,56 All three chelating drugs are effective in the removal of non-transferrin bound iron.52,137-139 

Differential iron removal from various organs of iron loaded patients: 

L1 preferential iron removal from the heart and DFRA from the liver. DF from the liver or heart. (Efficacy is related to the dose of all 

chelators).98-103 

Efficacy in iron removal from the heart of iron loaded patients: 

The ICOC oral L1 / intravenous DF combination > The ICOC oral L1 / subcutaneous DF combination > oral L1> intravenous DF > 

subcutaneous DF > DFRA. (Efficacy is related to the dose of the chelators).98-103,140,141 

Iron redistribution in diseases of iron metabolism by chelating drugs: 

L1 and to a lesser extent DF can cause iron redistribution from the reticuloendothelial system to the erythron in anaemic rheumatoid 

arthritis patients. Enterohepatic circulation by DFRA and metabolites. 142-144 

Increase excretion of metals other than iron e.g. Zn and Al: 

Order of increased Zn excretion in iron loaded patients: DTPA> L1> DF>DFRA.145-149 DF and L1 cause increase Al excretion in renal 

dialysis patients. DFRA causes an increase Al absorption.135, 150,151  

Iron mobilisation and excretion of chelator metabolite iron complexes: 

Several DF metabolites have iron chelation potential and increase iron excretion but not the L1 and DFRA glucuronides. 16,52,152,153  

Chelating drugs minimising other drug toxicity: 

L1 but not DFRA, inhibit doxorubicin induced cardiotoxicity.92,154 

Combination chelation therapy: 

L1, DF and DFRA combinations are more effective in iron excretion than monotherapies. Different 1-3 chelating drug combinations are 

under evaluation.5,9,58,81,100,155-158  

Chelating drug synergism with reducing agents: 

Ascorbate act synergistically with DF but not L1 or DFRA for increasing iron excretion. 47,159,160 

Chelating drug antioxidant effects: 

L1 and DF have shown antioxidant action in in vitro, in vivo and clinical settings. The antioxidant effects of DFRA are under evaluation. 

Only L1 has been shown to have antioxidant effects in the brain of Friedreich’s ataxia and pantothenate kinase-associated 

neurodegeneration patients.11,13,75,93,95,161-163 

 

patients with normal iron stores.66,74  

As a result of the DF limitations, no clear strategies 

have become available or promoted in the last 50 years 

for the complete elimination of excess iron and the 

normalisation of the iron stores in thalassaemia and 

other patients.  

It has been estimated previously that in the absence 

of chelation therapy the mean survival of thalassaemia 

major patients was about 20 years, and the primary 

cause of death was congestive cardiac failure.5,66,74 

Results from a UK registry indicate that with the 

introduction of DF the mean survival of thalassaemia 

major patients has increased to about 35 years.76 

Recently, with the introduction of L1, the mortality rate 

of thalassaemia major patients has decreased 

substantially and mean survival is approaching that of 

normal individuals.5,77 

It appears that the primary aim of chelation therapy 

in thalassaemia major and possibly other chronically 

transfused patients, i.e. the removal of all excess iron 

and inhibition/prevention of iron toxicity, as well as the 

associated tissue and organ damage can now be 

accomplished in most cases.8,77 This aim became 

foreseeable and applicable very recently especially in 

patients that followed the ICOC protocol using L1 and 

L1/DF combinations.8,73,77 Furthermore, the secondary 

aim of chelation therapy in chronically transfused 

patients i.e. the safe maintenance of normal iron stores, 

has also been achieved using lower dose ICOC 

protocols of L1 monotherapy and L1/DF 

combinations.8,73,77  

 

The Achievement and Maintenance of Normal Iron 

Stores in Thalassaemia. Although the efficacy of 

chelation monotherapies with DF, L1, and DFRA have 

been thoroughly studied, no normalisation of the iron 

stores was reported or investigated in thalassaemia 

major patients since in the vast majority of patients the 
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Figure 6. Clearance of iron overload from the liver and heart of two thalassaemia patients treated with the deferiprone / deferoxamine (L1 ⁄ 

DF) combination using MRI assessment.  

 

A) MRI changes during the L1 (80-100 mg/kg/day) ⁄ DF (40 mg/kg/day 1-3 days per week) combination therapy. Left MR image picture: 

View of heart (top arrow) and liver (bottom arrow) of a thalassaemia patient before treatment (Cardiac T2* was 14.5 ms and liver T2*3.7 ms. 

Serum ferritin was 1626 μg ⁄ L). Right picture: 20.5 months after treatment (Cardiac T2* was 20.7 ms and liver T2* 18 ms. Serum ferritin 

was 186 μg ⁄ L). Adapted from reference 81 (with permission).  

 

B) MRI changes during the L1 (75-85 mg/kg/day) / DF (30-60 mg/kg/day, 2-3 days per week) combination therapy. Left MR image: View of 

liver and heart of a thalassaemia patient before treatment. (Cardiac T2∗ was estimated as 9.3 ms and liver T2∗ as 3.8 ms. The serum ferritin 

was 727 μg/L). Right MR image: 9 months after treatment (Cardiac T2∗ was 23.0 ms and liver T2∗ 26.2 ms. The serum ferritin was 166 

μg/L). Adapted from reference 44 (with permission). 

 

rate of iron removal by chelation was, in general, lower 

by comparison to the rate of iron intake from RBC 

transfusions (Table 2).  

The normalisation of the iron stores in thalassaemia 

major and other chronically transfused patients was not 

considered as a possible option following the 

introduction of DF and later DFRA, mainly because 

DFRA and DF were not sufficiently effective in 

removing all excess iron but also because in both cases 

there was a high risk of toxicity in non heavily iron 

loaded patients with serum ferritin lower than 500 μg/L, 

as described in their drug label information.78 

Another limiting factor for not achieving normal 

iron stores was that no such aim had been proposed in 

the medical literature until recently or was described in 

the drug label information of L1, DF, and DFRA. It 

appears that overall insufficiently effective and 

suboptimal chelating drug dose protocols are generally 

used even today by most thalassaemia and other clinics, 

despite that the normalisation of the iron stores should 

be a primary aim for thalassaemia and other 

multitransfused patients. In most of these cases, 

chelating drug combinations are required for achieving 

normal iron stores.73  

Individual drug monotherapies are described and 

recommended by the chelating drug manufacturers in 

all three chelating drug label information, while 

chelating drug combinations are not described and are 

clearly excluded as a form of therapy. The prospect of 

chelating drug combinations and precisely the L1/DF 

combination was an academic initiative and suggested 

as early as 1987 and repeated in 199246,79 It was then 

mainly recommended for patients with toxicity or 

efficacy complications of either DF or L1.46,79  

The dilemma of how to control iron load and over-

chelation following the achievement of normal iron 
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stores has been demonstrated in several studies using 

the ICOC and similar protocols of tailor-made 

administration of L1 and L1/DF combinations and by 

regular monitoring of iron store levels.8,78 

The first report of the normalisation of the iron 

stores in iron loaded thalassaemia major patient was 

described following the replacement of DF with L1 due 

to congestive cardiac failure caused by cardiac iron 

overload during DF therapy.80 Several other reports 

followed, indicating that the use of selected 

combinations of L1 and DF could achieve the 

normalisation of the iron stores in iron loaded 

thalassaemia major patients.81-83 In particular, the ICOC 

protocol of L1 (80–100 mg/kg/day) and subcutaneous 

DF (40–60 mg/kg/day, at least 3 days per week) was 

identified as the most tolerable and effective chelation 

therapy protocol for achieving negative iron balance 

(Figure 6, Table 3).33,81 

Continuous monitoring of the iron stores, e.g. 

monthly serum ferritin assessment, is required for 

regularly transfused patients who have achieved 

normal iron stores.83 Furthermore, continuous 

adjustment of iron chelation dose protocols is 

necessary for maintaining the normal iron stores 

without the prospect of excess chelation toxicity. 83 

Different dose protocols of L1, DF, and L1/DF 

combination, are required for maintaining normal iron 

stores within the context of personalised medicine. 83 In 

some cases of low serum ferritin in thalassaemia major 

patients, withdrawal of chelation therapy may be 

necessary for avoiding iron deficiency.83,84  

In addition to the more significant clinical benefits 

for thalassaemia patients from the maintenance of 

normal iron stores, there is also a substantial reduction 

in the cost of chelation therapy since much lower doses 

of chelators are generally used by comparison to iron 

loaded paients.58,83 

 

Future Prospects of Iron Chelation Therapy. It is 

conceivable that the aim of iron chelation therapy in 

transfusional iron overload for achieving and 

maintaining normal iron stores will be accomplished in 

many more patients in the forthcoming years, thus 

decreasing associated morbidity and mortality due to 

excess iron toxicity. Already in countries like Cyprus, 

many thalassaemia patients are achieving life spans 

approaching that of the general population, are active 

professionals in society and have families with children 

and even grandchildren.5,77  

The same aim and approach for the normalisation of 

the iron stores and the reduction of excess iron toxicity 

in thalassaemia major could be used in many other 

haematological conditions of iron overload including 

myelodysplasia, post-allogenic stem cell trans-

plantation, non-transfusion dependent thalassaemia 

(NTDT), non-venesected idiopathic haemochromatosis, 

transfused cancer cases etc.78 Effective iron chelation 

therapy protocols within the context of personalised 

medicine and risk/benefit assessment could be used in 

each of these cases, similar to the ICOC protocol. 61 In 

most of these cases, tolerant and active combination 

protocols of 1-3 chelating drugs may be used for 

effective and rapid clearance of excess iron.81-83  

The interaction between chelating drugs and 

chelating drugs with other drugs used for other 

therapeutic effects of the underlying diseases needs 

further investigations. Similarly, the therapeutic and 

toxic effects of drugs with chelating potential such as 

hydroxycarbamate (hydroxyurea) and iron also need 

further investigation.85 

The clinical application of iron chelating drugs and 

other chelators is likely to increase in the future 

involving the treatment of many other diseases in 

addition to transfusional iron overload and focal iron 

deposit toxicities.11-13,74,86 Initial clinical trials in 

several non iron loaded diseases with L1 are 

encouraging and promising.87-90 Most of these future 

applications include infectious diseases by withholding 

iron from microbes, intervention in iron metabolic 

pathways associated with cancer, HIV and other 

diseases, detoxification of environmental and 

diagnostic metals, and inhibition of excess toxic free 

radical production involved in many diseases of free 

radical pathology.74,75,87-91 In particular, with regards to 

the latter, iron chelation therapy using L1 has been 

considered for the reduction of anticancer drug toxicity 

such as doxorubicin, for ophthalmic toxicity and 

neurotoxicity and also many other related 

applications.92-95  

The selection of therapeutic protocols for 

thalassaemia and other diseases involving chelating 

drugs is crucial because it affects risk/benefit 

assessment and therapeutic outcome, as well as 

morbidity and mortality of hundreds of thousands of 

patients.96-99 The present state of generally ‘random’ 

selection of chelating drug protocols does not appear to 

benefit the patients. In this context, the high efficacy 

and safety of the ICOC L1/DF combination protocol 

should be considered as a first line chelation treatment 

for the vast majority of thalassaemia patients.8,81,83 This 

proposition is supported by recent detailed monitoring 

findings in the improvement in cardiac iron depletion 

rate and cardiac function by L1 and L1/DF over other 

therapies.60,100 Advances in the constant monitoring of 

iron deposition in critical organs like heart, liver, and 

pancreas by MRI T2* has recently allowed 

improvement in the tailoring iron chelation therapy and 

the selection of the more appropriate chelation 

regimens in different clinical cases, thus reducing 

overall patient mortality and morbidity.101-103 

The limitations in the use of L1 and the L1/DF 

combination in some countries may constitute an 

irregular action by health policy decision makers and 

also negligence in relation to the well being of 

http://www.mjhid.org/


 

  www.mjhid.org Mediterr J Hematol Infect Dis 2020; 12; e2020011                                                         Pag. 11 / 17 
 

thalassaemia patients. This policy appears to be 

controversial, especially considering that drug 

combinations are widely used not only in other 

haematological conditions but also in many other 

diseases.  

Similar controversies apply in the risk/benefit 

assessment for the use of chelating drugs not only in 

transfusion-dependent thalassemia (TDT) but in 

patients with non -transfusion dependent thalassaemia 

(NTDT) intermedia, idiopathic haemochromatosis, 

myelodyplasia, sickle cell disease, post-transplanted 

sickle cell disease and thalassaemia as well as many 

other categories of patients.78,104-110 

With regards to personalised medicine, the 

characterisation of the iron metabolic or toxicity or 

other related targets is necessary for designing the 

appropriate therapeutic strategies in each condition and 

each patient, which can result in the optimisation of 

chelating drug protocol or other therapeutic 

interventions.111-117 In this context, the mechanisms of 

iron release from ferritin and haemosiderin, as well as 

other molecular or cellular mechanisms are of 

particular interest.118,119  

Changes in the therapeutic strategies are necessary 

under special circumstances such as pregnancy, 

splenomegaly, and infections and also when 

considering the possible introduction of erythropoietic 

biological or other emerging therapies.120-123 Similar 

considerations are in progress regarding other clinical 

issues such as the early initiation of chelation therapy 

using L1 in thalassaemia children from about one year 

of age and also the initiation of combination 

therapies.124-127 There are different criteria and opinions 

regarding the latter, with the ICOC L1/DF combination, 

for example, to be available, safe and flexible in all the 

patient categories and cases depending on the iron load 

levels and the rate of body iron intake from 

transfusions, whereas for other groups of investigators 

different restrictions are imposed in the use of 

combination protocols (Figure 6).9,57,58,73,81-83,99,100,103,128  

The academic debates on the efficacy, toxicity, 

historical, and other aspects of L1, DF and DFRA and 

their combinations are likely to continue in the 

forthcoming years. Such debates are mostly focused on 

past practises of ineffective therapies and not issues 

associated with the current “golden era” period of iron 

chelation therapy in thalassaemia, namely the 

achievement and maintenance of normal iron stores.81-

83,128-131  

The molecular, therapeutic, and other properties of 

L1 as a potent chelator and antioxidant with access to 

most tissues and organs make it a unique 

pharmaceutical with broad spectrum clinical 

applications.75,95 This prospect/dilemma is similar to 

that of the introduction of L1 as the first oral iron 

chelating drug about 30 years ago and needs further 

investigations to be confirmed.132 Within this context, 

specific therapeutic strategies have to be designed 

based on a risk/benefit assessment for each condition 

and each patient. The aim and targets of such 

therapeutic strategies need to be defined and evaluated 

in a manner similar to the case of the paradigm of the 

complete treatment of iron overload in thalassaemia 

using L1 and selected L1/DF combinations.58,81-83  
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