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Abstract. Therapy-related myeloid neoplasms (t-MN) are a late complication of cytotoxic therapy 
(CT) used in the treatment of both malignant and non-malignant diseases. Historically, t-MN has 
been considered to be a direct consequence of DNA damage induced in normal hematopoietic stem 
or progenitor cells (HSPC) by CT. However, we now know that treatment-induced mutations in 
HSC are not the only players involved in t-MN development, but additional factors may contribute 
to the onset of t-MN.  
One of the known drivers involved in this field is the bone marrow microenvironment (BMM) and, 
in particular, bone marrow mesenchymal stem cells (BM-MSC), whose role in t-MN pathogenesis 
is the topic of this mini-review.  
BM-MSCs, physiologically, support HSC maintenance, self-renewal, and differentiation through 
hematopoietic–stromal interactions and the production of cytokines. In addition, BM-MSCs 
maintain the stability of the BM immune microenvironment and reduce the damage caused to 
HSC by stress stimuli.  
In the t-MN context, chemo/radiotherapy may induce damage to the BM-MSC and likewise alter 
BM-MSC functions by promoting pro-inflammatory response, clonal selection and/or the 
production of factors that may favor malignant hematopoiesis. 
Over the last decade, it has been shown that BM-MSC isolated from patients with de novo and 
therapy-related MN exhibit decreased proliferative and clonogenic capacity, altered morphology, 
increased senescence, defective osteogenic differentiation potential, impaired immune-regulatory 
properties, and reduced ability to support HSC growth and differentiation, as compared to normal 
BM-MSC.  
Although the understanding of the genetic and gene expression profile associated with ex vivo-
expanded t-MN-MSCs remains limited and debatable, its potential role in prognostic and 
therapeutic terms is acting as a flywheel of attraction for many researchers. 
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Introduction. Therapy-related myeloid neoplasms (t-
MN), or MN post cytotoxic therapy (MN-pCT) include, 

according to the 2022 WHO classification1 and its 
previous editions,2-3 therapy-related acute myeloid 
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leukemia (AML), myelodysplastic syndromes (MDS), 
and myelodysplastic/myeloproliferative neoplasms 
(MDS/MPN). 

t-MNs are a late complication of cytotoxic agents 
(chemo and/or radiation therapy) used in the treatment of 
both malignant (solid or hematological) and non-
malignant (mostly autoimmune) diseases. 

They are an emerging problem of our aging society, 
where the newer therapeutic drugs and ameliorated 
cancer management protocols have improved the life 
expectancy of cancer patients in the last decades.4 This 
results in an increase in patient number at risk of 
developing this late treatment-related complication,5 
characterized by poor prognosis (5-year overall survival 
<10%)6 and refractoriness to current standard treatment 
strategies, still remaining an unmet clinical need of 
cancer survivorship programs.7 

t-MN accounts for approximately 10–20% of newly 
diagnosed cases of AML or MDS and can occur at any 
age. 

Historically, t-MN has been considered to be a direct 
consequence of DNA damage induced in normal 
hematopoietic stem or progenitor cells (HSPC) by CT. 
However, in recent years advances in deep sequencing 
techniques have faltered this historical theory and have 
given way to a multi-hit model of t-MN where both 
intrinsic and extrinsic factors contribute to its 
development.8 

According to this multi-step pathogenesis, patient-
related factors, including age, type, and treatment of 
primary disease, in the presence of germ-line variants, 
together with acquired factors, such as clonal 
hematopoiesis of indeterminate potential (CHIP) and 
inflammation, may all contribute to lay the groundwork 
for the development of myeloid diseases.7,9-15 The 
subsequent CT may later favor additional hit 
development, such as the acquisition of genetic and/or 
cytogenetic abnormalities, the selection of abnormal 
hematopoietic clones (e.g. with TP53 mutations and/or 
unfavorable karyotype) and changes in the bone marrow 
microenvironment (BMM), resulting in t-MN onset.8,16-

19  
In this mini-review we synthesize recent findings 

about the involvement of BMM in MN de novo (MDS 
and AML) and therapy-related pathogenesis with a 
deeper focus on the role of bone marrow mesenchymal 
stem cells (BM-MSC). For all other players involved in 
the pathogenesis of t-MN (inherited predisposition, 
exposure to genotoxic agents, clonal selection and 
abnormal bone marrow microenvironment), we refer you 
to two recent reviews.8,16  

 
Mesenchymal Stem Cell: an Intriguing Cell Within 
the Bone Marrow Cellular Metropolis. Human BM 
can be considered a cellular metropolis, composed of 
highly vascularized multicellular tissue containing self‐

renewing HSCs, which generate progeny that 
progressively differentiates into mature myeloid, 
erythroid, and lymphoid cells. These HSCs in the BM are 
surrounded by a plethora of cellular (endothelial cells, 
osteo-lineage cells, adipocytes, MSC, fibroblasts, 
macrophages, neutrophils, megakaryocytes, and immune 
cells) and noncellular (extracellular matrix and soluble 
factors) components. BMM cells form distinctively 
organized niches (endosteal, perivascular, arteriolar, and 
central medullary), with each of these anatomical regions 
in the bone having a specialized role in maintaining the 
quiescence, homing and mobilization of the HSC.20-24 
Collectively, these different cell types interact with each 
other and HSC both through direct contact‐based 
regulation and the secretion of key signaling molecules 
and, in this way, participate in the maintenance of 
hematopoietic homeostasis.25  

In this mini-review, we focus on mesenchymal stem 
cells, one of the players involved in bone marrow 
homeostasis. Mesenchymal stem cells or mesenchymal 
stromal cells are multipotent stem cells of mesodermal 
origin (Figure 1) that can be isolated from adult and fetal 
tissues. In the bone marrow, they represent a rare 
population, accounting for 1/104 mononuclear cells. BM-
MSCs have a fibroblast-like morphology. According to 
the International Society for Cellular Therapy,26 a cell to 
be defined as a BM-MSC must comply with 3 minimum 
criteria: 

- ability to adhere to a plastic substrate under standard 
culture conditions (unlike HSC grow in suspension) 

- immunophenotype positive for main mesenchymal 
markers such as CD73, CD90, CD105 and negative for 
main hematopoietic markers such as CD14, CD79, CD34, 
CD45, HLA-DR  

- trilinear differentiative potential (osteogenic, 
adipogenicity and chondrogenic lineages). 

MSCs are distinct from BM stromal cells, which are 
mostly comprised of hematopoietic supporting 
fibroblasts, differentiated from MSC. In BM, MSCs can 
be located at different anatomical sites (central sinus, 
trabeculae, endosteal region, and compact bone). These 
locations are also sites of hematopoietic activity in which 
the function of HSC is supported by BM-MSC and their 
differentiated cells (e.g. fibroblasts, adipocytes and 
osteoblasts). Thus, the functional relationship between 
MSC and hematopoietic activity are part of the process 
of maintaining BM homeostasis. 

Physiologically, BM-MSCs have dual functions 
(Figure 2): support hematopoiesis and regulate, by 
inhibiting, the immune response. BM-MSCs regulate the 
balance between self-renewal and differentiation of HSC 
through the production of various soluble factors (such 
as growth factors and cytokines) as well as surface 
molecules. 

Moreover, BM-MSCs have immunoregulatory 
properties by maintaining the stability of the BM  
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Figure 1. Main features of mesenchymal stem cells. Created with BioRender.com. Legend: MNC: MonoNuclear cell; BM: Bone Marrow; 
ISCT: International Society of Cellular Therapy.26 
 

 
Figure 2. Simplified picture of the function of mesenchymal stem 
cells in a healthy bone marrow. Created with BioRender.com. 
 

immune microenvironment and reducing the damage 
caused to HSC by stress stimuli. 

 
Involvement of BM-MSC in de novo MN 
Development. Recent studies have highlighted the role 
of a complex bidirectional crosstalk between HSC and 
the BMM in normal hematopoiesis, as well as in the 
pathogenesis of myeloid diseases.27 Emerging data 
suggest that alterations of BM-MSC, an important 
component of the BMM,28 may play a role in the 
pathogenesis of myeloid neoplasms, both de novo and 
therapy-related,29-36 although the mechanisms are not yet 
fully understood. 

The first experimental evidence supporting the 
crucial role of BMM and MSC in the initiation and 
progression of myeloid malignancies derived from in 
vivo models. Using murine genetic models, several 
groups have shown that specific genetic changes in the 
microenvironment, including reduced function of genes 
such as RAR-γ, Rb, Mib1, IκBα, Sipa1, Dicer1 and 
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concordant loss of the EGR1, APC, and TP53 in non-
hematopoietic cells, may have a pathophysiological 
significance in the genesis of hematological 
malignancies, in particular for the creation of a 
premetastatic niche that supports the growth and spread 
of clonal neoplastic cells.37-41 

In a mouse model of pre-leukemia, Zambetti and 
colleagues42 established a concept of mesenchymal 
niche-induced genotoxic stress in HSC, providing 
conceptual and mechanistic insights into the link 
between inflammation and cancer. The authors showed 
that perturbation of mesenchymal cells in a mouse model 
of the pre-leukemic disorder Shwachman-Diamond 
syndrome induces mitochondrial dysfunction, oxidative 
stress, and activation of DNA damage responses (DDR) 
in HSPC through p53-S100A8/9-TLR4 inflammatory 
signaling as a common driving mechanism of genotoxic 
stress.42  

Taken together, all these mouse model studies 
strongly support the hypothesis that an altered BMM 
provides ''fertile ground'' for the expansion of neoplastic 
cells in vivo. 

Moreover, BM-MSCs influence leukemic cells and 
are essential for the propagation of human MDS-HSC in 
vivo in xenograft models. Medyouf and colleagues 
showed the inability of human MDS stem cells to 
propagate in a cell-autonomous manner and 
demonstrated that co-injection of MDS-HSC with MDS-
MSC in NSG mice results in a significantly higher 
percentage of engraftment compared single injection of 
MDS-HSC in the bone marrow of xenografted mice 
analyzed 16–28 weeks post-transplant.33 Therefore, this 
patient-derived xenograft model provides functional and 
molecular evidence that MN is a complex disease that 
involves both the hematopoietic and stromal 
compartments. An independent study has also 
demonstrated that multiplex gene editing to confer 
leukemic drivers in healthy human HSPC is insufficient 
for the development of leukemia after transplantation in 
mice, supporting the need for a dysplastic stroma in 
disease initiation.43 

In summary, BM-MSC may influence hematopoietic 
cells and similarly, hematopoietic cells can induce 
remodeling of BM-MSC. After long periods of 
exposition to neoplastic hematopoietic cells, healthy 
BM-MSCs can be reprogrammed, acquiring functional 
alterations, to work in cooperation with leukemic cells 
and propagate the disease. 

Compared to BM-MSC isolated from healthy donors 
(HD), BM-MSC isolated from patients with de novo 
MDS/AML are structurally, epigenetically and 
functionally altered (Figure 3).29-36 Unlike the BM-MSC 
isolated from HD having the characteristic fibroblast-
like appearance, patient-derived BM-MSC present an 
altered morphology, are larger and appear flattened and 
disorganized. Moreover, they exhibit decreased  

 
 

Figure 3. Main alterations observed in ex vivo-expanded de novo MN 
BM-MSC. Created with BioRender.com. 

 
proliferative and clonogenic capacity, reduced 
osteogenic differentiation, increased senescence and 
impaired immunoregulatory properties.29-36  

The clonal origins of MN-MSC have always been 
questioned. There are contradictory reports about the 
presence of ‘MN related-gene’ mutations or 
chromosomal abnormalities in MN MSC.44-51 Regarding 
chromosomal analysis, Blau and colleagues reported 
BM-MSC karyotype abnormalities in a fraction of 
MDS/AML patients (15-30%), but not in healthy 
controls. Of note, these studies reported the occurrence 
of non-clonal chromosomal aberrations in BM-MSC 
isolated from patients with MDS and AML, which only 
very rarely correspond to the cytogenetic markers 
observed in the hematopoietic leukemic clone of the 
same individual.44-45 In the same line, our group 
investigated the frequency of recurrent mutations of 
epigenetic and spliceosome genes in paired bone marrow 
hematopoietic and mesenchymal cells isolated from 
patients with different myeloid malignancies. We found 
no mutations for any of the studied genes in the MSC 
compartment, both in carriers of mutations in the 
hematopoietic compartment and in wild-type patients.46  

Furthermore, MN–MSCs have an altered expression 
of key molecules involved in the interaction with HSPC, 
in particular Osteopontin, Jagged1, Kit-ligand and 
Angiopoietin as well as several chemokines.32,52 
Functionally, this translated into a significantly reduced 
ability of MN-MSCs to support normal HSC in long-
term culture-initiating cell assays. When MDS HSC are 
cultured with MSC from healthy donors, their 
clonogenic capacity is partially restored.32 These data 
indicate that diseased bone marrow cells are likely to 
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play an active role in the ‘‘reprogramming’’ of their BM 
niche during disease development and/or progression by 
possibly converting it into a self-supportive one. 

A similar reduction in hematopoiesis support can be 
reproduced by silencing the transcription factor FOXM1 
in BM-MSC. The repression of FOXM1, the 
transcription factor that drives G2/M transition, in 
elderly mitotic cells, increased chromosome mis-
segregation and correlates with an early senescence-
associated phenotype.53 Recently, our group have 
showed that the silencing of FOXM1 mRNA in HD-
MSCs recapitulates the downregulation of FOXM1 and 
its mitotic targets observed in MSC de novo and therapy-
related MDS.54 Furthermore, FOXM1 silencing is able to 
reduce the supportive capacity of hemopoiesis as 
demonstrated by the reduction of granulocyte colonies 
numbers after coculture of healthy HSC with MSCs in 
which FOXM1 was silenced.54  

 
Involvement of BM-MSC in Therapy-related MN 
Development. For just over a decade, we have known 
that t-MN development is a multifactorial process 
resulting from complex interactions between an 
underlying germline genetic susceptibility, the stepwise 
acquisition of somatic mutations in HSC, the clonal 
selection pressure exerted by CT and alterations in 
the BMM.8 However, although in the literature many 
works comparing the 
mutational/transcriptomic/epigenetic/cytogenetic 
profiling of de novo and therapy-related MN at the level 
of the hematopoietic compartment (HSC or HSPC) are 
present,55-59 extensive studies concerning the 
involvement of BM-MSC in the pathogenesis of t-MN 
are only recently emerging.30,46,60 One of the first works 
in this regard was conducted by our group in 2016 on a 
cohort of patients with multiple hematologic 
malignancies, including de novo MDS/AML and 
therapy-related myeloid neoplasms of whom we isolated 
and ex vivo-expanded BM-MSC.30 In t-MN BM-MSCs, 
we observed an altered morphology and a decreased 
proliferative and clonogenic potential compared to HD-
MSC.30 Moreover, no mutations in genes involved in 
splicing, DNA methylation, and the TP53 gene have 
been identified in t-MN MSC.46,60 

More recently, to better decipher the 
microenvironmental changes induced by CT vs. 
neoplasia, Kutyna and colleagues performed a multi-
omic (transcriptome, DNA damage response, cytokine 
secretome, and functional profiling) characterization of 
BM-MSC both from patients with t-MN, MN, and 
another cancer but without cytotoxic exposure, typical 
primary MN, and age-matched controls.60 The authors 
showed that t-MN MSCs are distinct from HD-MSCs but 
are also distinct from other primary MNs, developing 
apart from cytotoxic exposure. Strikingly, among all 
studied populations, t-MN appeared to have the greatest 

defect in terms of morphology, proliferative capacity, 
and support to hematopoiesis.  

What is the role of cytotoxic therapy in this context? 
The role of CT is complex and not yet clear. Cytotoxic 
therapy has been shown to exert several effects on the 
BMM, including a pro-inflammatory response with the 
consequent release of inflammatory cytokines (e.g., 
TNFα, TGFβ, and IL-6) and release of reactive oxygen 
species (ROS) by MSC with resultant genotoxic damage 
to HSC.8,41  

Stoddart and colleagues described cooperative effects 
of exposing both the BMM of recipient mice and donor 
HSPC to the alkylating agent N-ethyl-N-nitrosourea 
(ENU) in a genetically model of therapy-induced MDS 
and AML characterized by chromosome 5q deletions.41 
In detail, the haploinsufficiency of two del(5q) genes 
(EGR1 and APC), together with TP53 knockdown, in a 
mouse model, produces a high frequency of myeloid 
diseases following concurrent treatment of both 
hematopoietic cells and the BM stroma with ENU, but 
not after treatment of either alone.41 In addition, loss of 
TP53 with EGR1 and APC was required to drive the 
development of a transplantable leukemia and 
accompanied by the acquisition of somatic mutations in 
DDR genes. ENU treatment of MSC induced cellular 
senescence and led to the acquisition of a senescence-
associated secretory phenotype (SASP), which is a 
critical microenvironmental alteration in the 
pathogenesis of t-MN.41,56  

Similarly, t-MN ex vivo expanded BM-MSC showed 
a profoundly senescent phenotype with a characteristic 
flattened morphology, defective regenerative capacity, 
high p21 and β-Galactosidase expression, and a SASP 
with secretion of pro-inflammatory cytokines, 
chemokines, and proteases.60 Interestingly, the level of 
senescence in t-MN BM-MSCs was independent of the 
latency period, the interval between completion of CT 
and t-MN diagnosis. High levels of senescence were 
evident both in t-MN BM-MSC with short (3–4 months) 
and long latency (up to two decades following CT).60 
Moreover, BM-MSCs derived from t-MN had higher 
baseline DNA damage and higher intracellular ROS 
levels compared to HD BM-MSC and were highly 
sensitive to CT (e.g., Doxorubicin).60  

Recently, Özdemir and colleagues showed that 
alterations in the BM niche may play a critical/driver role 
in the development of secondary AML. The treatment 
with the chemotherapeutic agent Etoposide of HD BM-
MSC is able to induce an increased expression of 
selected genes involved in xenobiotic metabolism, DNA 
double-strand break response, heat shock response, and 
cell cycle regulation such as CYP1A1, GAD34, ATF4, 
NUPR1, CXCL12, KLF4, CCNB1.61 

Similarly, the high senescence level observed in t-
MN BM-MSCs is due to a defect in the DDR pathway, 
resulting in permanent DNA damage after exposure to 
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cytotoxic therapy.60,62 Sequential patient sampling 
showed that exposure to DNA-damaging agents leads to 
pro-inflammatory stromal defects and irreversible 
damage evident many years before the onset and 
diagnosis of t-MN. These data underscore the role of 
senescence in the pathogenesis of t-MN and provide a 
valuable resource for future therapeutics with 
repercussions for patients treated with chemotherapy or 
radiotherapy. 

Despite their dormant state, t-MN stromal cells were 
metabolically highly active with a switch toward 
glycolysis and secreted multiple pro-inflammatory 
cytokines (IFNγ, IL-7, IL-1β, IL-13, IL-15, and EGF) 
indicative of a senescent-secretory phenotype that 
inhibited adipogenesis.60 t-MN MSC exhibited a 
selective defect in adipocyte differentiation that was 
experimentally mimed by treating healthy BM-MSC 
with senescence-secreted cytokines IL-1β and IFNγ. 
Treatment of HD BM-MSC with IL-1β, IFNγ, IFNα, or 
a cocktail of cytokines (IL-1β, IL-13, IL-15, IL-6, IFNα, 
and IFNγ) profoundly inhibited adipogenesis in vitro, 
demonstrating a potential causative role of senescence-
secreted cytokines in inhibiting adipogenesis. These data 
suggest that the secretome is modifying stromal fate.60 

Finally, Kutyna and colleagues showed that senolytic 
agents Dasatinib and Quercetin alone or in combination 
effectively reduced the senescence burden and restored 
the differentiation potential of t-MN BM-MSC, 
indicating a possible role of senolytic therapies in 
modulating t-MN long-term. Senolytics, including 
Dasatinib and Quercetin, have been shown to selectively 
eliminate senescent cells from both humans and 
mouse,63-67 with evidence that sufficient restoration of 
function may occur without eliminating all senescent 
cells.63,65,68 Indeed, in the study of Kutyna and colleagues, 
senolytics restored the defect in adipogenesis 
differentiation in t-MN.  

Currently, there is an enhanced focus on extrinsic, 

age-related changes in the BM microenvironment that 
accompany the development of t-MN. One of the most 
prominent changes associated with aging is the 
accumulation of senescent BM-MSC within tissues and 
organs. In comparison with proliferating cells, senescent 
cells display an altered secretome comprising proteases, 
inflammatory cytokines, and growth factors that may 
render the local microenvironment favorable for cancer 
growth.69 There is emerging evidence that BM-MSC 
senescence may contribute to age-related hematopoietic 
decline and cancer development. Moreover, CT creates 
an environment that selects for pre-existing mutant 
clones at the expense of normal HSCs. In this context, 
DNA damage-induced competition led to a selective 
clonal advantage of HSCs and hematopoietic progenitor 
cells with reduced p53 function in mouse BM chimeras, 
reminiscent of the CHIP phenotype, via growth arrest 
and senescence-related gene expression in cells with 
higher p53 activity.70 

 
Summary and Future Prospective. Therapy-related 
myeloid neoplasms are a multifactorial disease resulting 
from complex interactions between a germline genetic 
susceptibility, the acquisition of somatic mutations in 
hematopoietic stem cells, the clonal pressure exerted by 
cytotoxic therapies, and alterations of the bone marrow 
microenvironment. 

BM-MSC isolated from patients with t-MN present 
several alterations (e.g., pro-inflammatory and senescent 
phenotype), both intrinsic and extrinsic, contributing to 
the pathogenesis of t-MN and could provide a valuable 
resource for future therapeutics. It would be interesting 
to understand whether the highly pro-inflammatory 
SASP observed in BM-MSC-derived from t-MN could 
initiate or promote a form of clonal hematopoiesis, 
eventually progressing to t-MN and whether it could 
become an effective therapeutic target.  

 
 

Figure 4. Contribution of BM-MSC in t-MN development. Created with BioRender.com. 
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In summary, these recent studies shed new light on 
the complex pathogenesis of t-MN and establish a model 

for future biological and preclinical investigation. 
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