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Abstract. Therapy-related Myeloid Neoplasm (t-MN) represents one of the worst long-term 

consequences of cytotoxic therapy for primary tumors and autoimmune disease. Poor survival and 

refractoriness to current treatment strategies characterize affected patients from a clinical point 

of view. In our aging societies, where newer therapies and ameliorated cancer management 

protocols are improving the life expectancy of cancer patients, therapy-related Myeloid Neoplasms 

are an emerging problem. Although several research groups have contributed to characterizing 

the main risk factors in t-MN development, the multiplicity of primary tumors, in association with 

the different therapeutic strategies available and the new drugs in development, make interpreting 

the current data still complex. The main risk factors involved in t-MN pathogenesis can be 

subgrouped into patient-specific, inherited, and acquired predispositions. 

Although t-MN can occur at any age, the risk tends to increase with advancing age, and older 

patients, characterized by a higher number of comorbidities, are more likely to develop the disease. 

Thanks to the availability of deep sequencing techniques, germline variants have been reported in 

15-20% of t-MN patients, highlighting their role in cancer predisposition.  

It is becoming increasingly evident that t-MN with driver gene mutations may arise in the 

background of Clonal Hematopoiesis of Indeterminate Potential (CHIP) under the positive 

selective pressure of chemo and/or radiation therapies. Although CHIP is generally considered 

benign, it has been associated with an increased risk of t-MN. In this context, the phenomenon of 

clonal evolution may be described as a dynamic process of expansion of preexisting clones, with 

or without acquisition of additional genetic alterations, that, by favoring the proliferation of more 

aggressive and/or resistant clones, may play a crucial role in the progression from preleukemic 

states to t-MN. 
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Introduction. Therapy-related Myeloid Neoplasms (t-

MN) include Acute Myeloid Leukemia (AML), 

MyeloDysplastic Syndromes (MDS), and 

MyeloDysplastic/MyeloProliferative Neoplasm 

(MDS/MPN) arising in patients treated with chemo 

and/or radiation therapy for a previous cancer or an 

autoimmune disease.1,2  

In the 5th edition of the WHO classification of 
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hematolymphoid tumors, t-MN have been included in a 

new segregated category of secondary myeloid neoplasm, 

encompassing diseases that arise in the setting of specific 

known predisposing factors such as Myeloid Neoplasms 

post Cytotoxic Therapy (MN-pCT). This term formally 

replaces “therapy-related”.3  

On the other hand, the term therapy-related has been 

retained by the “International Consensus Classification 

of myeloid neoplasms and acute leukemia” (ICC), but 

without differences in the concept that now both terms, 

“MN-pCT” and “therapy-related", are considered 

diagnostic qualifiers that should be added following the 

specific MDS or AML diagnosis.4  

The 10-year cumulative incidence of t-MN ranges 

from 1–10% according to different cancers and different 

chemo and/or radiation regimens.5,6 However, due to the 

steady improvement in the overall survival (OS) of 

cancer patients, an increase in the percentage of t-MN 

diagnoses has been shown in recent years.7 Nowadays, t-

MN represents one of the worst long-term side effects of 

cytotoxic therapy, since compared to de novo myeloid 

neoplasms, t-MN patients are characterized by a poor 

prognosis and refractoriness to current treatment 

strategies (about 5-year survival rate of 10%).3,6 

In this line, in our aging societies, where newer 

therapies and ameliorated cancer management protocols 

are improving the life expectancy of cancer patients, t-

MNs are an emerging problem.  

Over the last few decades, according to the available 

screening technologies, factors predisposing the 

development of t-MN have been investigated in different 

directions.  

Several Authors have studied the impact of the host's 

genetic background on cancer predisposition. 

Polymorphisms in genes involved in detoxification, 

DNA repair, and apoptosis may modify the individual 

risk of developing a t-MN. In particular, when 

detoxification and/or DNA repair are ineffective, the 

DNA damage induced by therapy can cause 

chromosomal instability, leading to severe failure of cell 

functions and/or apoptosis. Moreover, these 

polymorphisms have been shown to influence the 

individual response to cancer treatment by increasing the 

concentration of active drug metabolites or impairing 

enzymatic pathways that rescue cancer cells from 

genotoxic damage and apoptosis.8–13  

In the same line, germline variants typical of familial 

predisposition syndromes like Fanconi Anemia and Li-

Fraumeni have been reported at higher frequencies in t-

MN patients, and TP53 uncommon germline variants 

may play a key role in t-MN pathogenesis.14–16  

More recently, Clonal Hematopoiesis of 

Indeterminate Potential (CHIP) has been considered one 

of the main risk factors and has been identified at the 

time of the primary cancer diagnosis in 30%–70% of 

patients developing a t-MN, representing a pre-

malignant state, which the exposure to cytotoxic 

agents6,17,18 can further trigger.  

Despite several research groups that have contributed 

to characterize the main risk factors in t-MN 

development, the multiplicity of primary tumors, in 

association with the different therapeutic strategies 

available and the new drugs in development, make 

interpreting the current data still complex. In addition, 

we also need to keep in mind that in 10-15% of cases, 

myeloid neoplasm occurs as a second neoplasm in 

patients who underwent surgery alone to treat the 

primary tumor, and a familial and/or personal history of 

multiple neoplasms is present in 5-10% of patients.19  

Therefore, in order to better characterize the 

genotypic and phenotypic profiles of t-MN, the aim to be 

pursued in the early future should be to select a 

homogeneous study population consisting of patients 

affected by the same primary tumor, treated with similar 

treatment protocols before t-MN development, in order 

to limit the biases involved in the study of heterogeneous 

populations and treatments. 

 

Risk Factors in t-MN Pathogenesis: Patient-Specific 

Predisposition. Due to the limited incidence of t-MN in 

treated patients, during past years, many researchers 

have tried to identify the main potential contributors 

involved in t-MN onset. Understanding the risk factors 

associated with t-MN development is crucial for 

identifying high-risk individuals and implementing 

preventive strategies to improve patient outcomes. To 

date, three main categories of risk factors have been 

identified: patient-specific, inherited, and acquired 

predisposition.  

In the patient category, specific risk factors are 

included: age, previous cancer, autoimmune diseases 

(AD), and environmental exposure (smoking, benzene, 

irradiation, etc.).  

Age is one of the most significant risk factors for t-

MN development. Although t-MN can occur at any age, 

the risk tends to increase with advancing age. Older 

patients, characterized by a higher number of 

comorbidities and frequency of Clonal Hematopoiesis 

(CH), are more likely to develop the disease.20,21 

Although the frequency of t-MN can be considered 

very low, some primary tumors have been associated 

with a higher risk of t-MN development. In particular, 

the most common primary malignancies are breast 

cancer and lymphoproliferative disorders such as 

Hodgkin's and non-Hodgkin's lymphoma, Multiple 

Myeloma (MM), and Chronic Lymphocytic Leukemia 

(CLL).22–25  

The direct correlation between the type of primary 

tumor and the risk of developing a t-MN can be related 

to the specific type of treatment to which patients are 

subjected and to their survival duration. 

Some chemotherapy drugs, alkylating agents, and 
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topoisomerase II inhibitors (cyclophosphamide, 

busulfan, and melphalan, as well as etoposide and 

doxorubicin), have been associated with an increased 

risk of t-MN. Alkylating agents damage DNA by adding 

alkyl groups to its structure. At the same time, 

topoisomerase II inhibitors interfere with the 

topoisomerase II enzyme's function, which helps manage 

DNA structure during cell division. As a result, DNA 

sequence and chromosomal structure would be altered, 

increasing the risk of t-MN.26 Recently, PARP1 inhibitor 

therapy has been added in the 5th edition of WHO 2022 

as a qualifying criterion for t-MN, while the treatment 

with methotrexate has been excluded.3 The time of 

insurgence of t-MN is generally earlier (1-3 years) in 

patients treated with Topoisomerase inhibitors than 

Alkylating agents and/or radiation (7-10 years), even if 

the frequent contemporaneous administration of these 

drugs makes this difference not significant.25 

In 10-15 % of cases, myeloid neoplasms may occur 

as a second neoplasm in patients who underwent surgery 

alone to treat the primary tumor. Surgery is not typically 

associated with an increased risk of myeloid neoplasms; 

however, surgery can include adjuvant and neo-adjuvant 

therapies, such as chemotherapy or radiation, 

recommended to reduce the initial tumor mass or 

eradicate residual cancer cells to reduce the risk of new 

occurrence. The administration of these adjuvant 

treatments may also play a role in t-MN pathogenesis.19  

Autoimmune diseases, such as Systemic Lupus 

Erythematosus (SLE), Rheumatoid Arthritis (RA), 

Multiple Sclerosis (MS), and Inflammatory Bowel 

Disease (IBD) have also been considered potential risk 

factors in t-MN development.27 The involvement of the 

immune system and inflammation has been indicated as 

a possible driving factor contributing to myeloid 

neoplasm development and progression. Systemic-

Inflammatory-Autoimmune-Diseases (SIAD) are 

increasingly considered in the hematological context.28  

However, myeloid neoplasm development depends 

on several factors not yet fully elucidated, including the 

specific subtype of AD, the chronic immune stimulation, 

the duration and anti-rheumatic/anti-inflammatory 

treatment, and the genetic predisposition. The most well-

documented leukemogenic potential is related to drugs 

such as azathioprine, cyclophosphamide, and 

mitoxantrone, which can impair the hematopoietic 

processes.29–31  

Finally, environmental exposure to cigarette smoking, 

benzene, pesticides, chemicals including Formaldehyde, 

and ionizing radiation has been associated with myeloid 

neoplasm pathogenesis. So, it should be included in the 

category of patient-specific risk factors.32,33  

Mutations in ASXL1 have been significantly 

associated with smoking history. Of note, current 

smokers showed a higher rate of ASXL1 mutations than 

former smokers.33 

The higher incidence of myeloid neoplasms in 

survivors of the Nagasaki and Hiroshima atomic bombs 

reinforces the causal relationship between ionizing 

radiation and hematological disorders.34,35  

In this context, the exposure of cells to ionizing 

radiation results in the increased formation of Reactive 

Oxygen Species (ROS), such as hydrogen peroxide, 

superoxide, and hydroxyl radicals. These molecules can 

oxidize and deaminate the nitrogenous bases of DNA, 

triggering damage to DNA structure. Cells with DNA 

damage are genomically unstable, cumulating somatic 

mutations and cytogenetic alterations, which are the 

basis for developing myeloid neoplasms.36,37 

Similarly, Benzene exposure is now considered 

casually related to myeloid neoplasms. Benzene and its 

metabolites are found to be harmful to Hematopoietic 

Stem Cells (HSC), giving rise to a reduction in the 

number of HSC and impairing their maturation and 

differentiation in myeloid and lymphoid lineages. 

Although the majority of evidence comes from case-

control studies and occupational studies with a relatively 

small number of cases, genotoxicity, immunotoxicity, 

altered gene expression, chronic inflammation, and 

induction of immunodepression are described as the 

main causes of benzene-induced damage.38,39 

 

Risk Factors in t-MN Pathogenesis: Inherited 

Predisposition. Germline variants (mutations and 

polymorphisms) have also been reported as risk factors 

in t-MN development. Thanks to the availability of deep 

sequencing techniques, a germline cancer predisposition 

has been confirmed in 15-20% of t-MN patients.14,40 

These germline variants can affect genes involved in 

DNA repair, cell cycle regulation, genotoxic metabolism, 

and other biological pathways related to cancer 

development.41–43  

Moreover, germline variants can make individuals 

more vulnerable to the harmful effects of chemo and/or 

radiation therapy. In this line, polymorphisms in genes 

belonging to the xenobiotic detoxification pathway, such 

as cytochrome p450, NADPH-quinone oxidoreductase 1 

(NQO1), and glutathione S-transferase (GST), and DNA 

repair pathways like RAD51, XRCC1, XRCC2, XRCC3 

and XPD, were among the first candidates to be studied 

for their possible involvement in t-MN development, 

since the ineffective repair of damaged cells, that survive 

to genotoxic stress, may be crucial for cancer genesis. 

Similarly, polymorphisms in apoptotic modulators could 

deregulate the apoptotic pathway, rescuing damaged 

cells from apoptosis and modifying the risk of t-MN 

(Figure 1). 

Although several Authors have contributed to 

delineate the role of these polymorphisms, their 

association with t-MN development has not been 

confirmed in large and independent study cohorts, 

probably because of the lack of adequate controls not 
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Figure 1. Modulation of response to cytotoxic therapy and ionizing radiation in patients with polymorphisms in detoxification, DNA repair 

and apoptosis pathways. A model of inherited predisposition. Created with BioRender.com. 

 

only matched for sex, age, and primary disease but also 

for therapy and comparable follow-up.11,44,45 

An increased susceptibility to t-MN development has 

also been described in individuals with inherited cancer 

predisposition syndromes such as Fanconi anemia (FA) 

and Li-Fraumeni syndrome. 

Fanconi anemia is associated with bi-allelic loss-of-

function mutations in the FA pathway, including 21 FA 

or FA-like genes. 

Voso et al. reported a high frequency of FA gene 

variants in t-MN patients (16%), with similar prevalence 

in t-MN secondary to lymphoproliferative diseases and 

breast cancer, indicating that heterozygous carriers of FA 

variants may have increased susceptibility to the DNA-

damaging action of cytotoxic therapy.15 Similarly, 

Schwartz et al. identified TP53 germline variants in 

15.5% of pediatric t-MN.46  

 

Risk Factors in t-MN Pathogenesis: Acquired 

Predisposition. Clonal hematopoiesis (CH) can play a 

key role in the risk factors related to an acquired 

predisposition. 

In two independent works, Jaiswal et al. and 

Genovese et al. reported the presence of somatic or 

acquired mutations in 1% of non-hematological patients. 

These studies also highlighted that mutations were very 

rare in patients under 40 (<1%) but progressively 

increased in older individuals, achieving the percentage 
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of about 20–30% in those aged 70 or older.47,48 Since 

these mutations were present in patients without 

detectable hematologic disorders, this phenomenon has 

been defined as age-related clonal hematopoiesis 

(ARCH). In contrast, clonal hematopoiesis of 

indeterminate potential (CHIP) was defined by somatic 

mutations with Variant Allele Frequency (VAF) greater 

than 2%.   

Notably, genes mutated at higher frequency were 

identified in myeloid neoplasms.47,48 

It is becoming increasingly evident that t-MN with 

driver gene mutations may arise in the background of 

CHIP under the positive selective pressure of chemo and 

radiation therapies.  

Hematopoietic stem cells accumulate somatic 

mutations during their biological life, most of which are 

nonpathogenic without functional consequences or 

potential for clonal expansion.  

Some mutated clones might gain proliferation and 

survival advantages, triggering the clonal expansion of a 

specific myeloid cell subset characterized by genetic 

alterations such as cytogenetic abnormalities, somatic 

mutations, and/or copy number variations. These 

genomic alterations represent a heterogeneous condition 

that may promote the transition from a physiological 

state to myeloid malignancy. 

Although ARCH and CHIP are mostly considered 

benign, they have been associated with an increased risk 

of t-MN. Their presence may create a preexisting pool of 

altered cells more prone to further genetic and malignant 

transformations and affect the hematopoietic 

microenvironment, driving bone marrow niche 

alterations.49  

Genovese et al. showed that subjects with CHIP have 

a higher risk of progression to hematological 

malignancies than subjects without mutated clones, 

which appears proportional to the VAF of mutated genes. 

This risk is about 11 to 13 times higher in individuals 

with clonal hematopoiesis, and the overall 

transformation rate is about 1% per year.48 

Gillis and Colleagues, in a proof-of-concept case-

control study, identified a prevalence of CHIP in patients 

who developed therapy-related myeloid neoplasms 

(62%) than that of control patients (27%), showing that 

individuals carrying CHIP mutations were at increased 

risk of t-MN compared to individuals without detectable 

CHIP mutations.50 

Similarly, our research group recently reported the 

high incidence of CHIP in Chronic Lymphocytic 

Leukemia (CLL) patients who developed a t-MN after 

treatment with chemo-(immuno)therapy, mostly 

Fludarabine, Cyclophosphamide, Rituximab (FCR). We 

detected 30 pathogenic/likely pathogenic variants in 10 

of 13 patients with a t-MN (77%). In contrast, CHIP 

variants were present in only 34 of 285 patients (12%) 

from the CLL control cohort who received the same 

treatment. Of note, backtracking the prevalence of CHIP 

in paired samples collected at the time of CLL diagnosis, 

the same variants were identified in 62.5% of patients.24  

These data highlight the potential role of CHIP as a 

risk factor for developing t-MN, suggesting the 

screening for myeloid clonal states, especially in older 

patients, before starting cytotoxic therapy. 

 

Clonal Evolution in Therapy-Related Myeloid 

Neoplasm. Clonal evolution is a dynamic process of 

expanding preexisting clones with or without acquiring 

additional genetic alterations that may be crucial in 

progressing from preleukemic states to t-MN. This 

process is directly shaped by therapy that may promote 

clonal competition, favoring the expansion of more 

aggressive and resistant clones, characterized by 

proliferative and survival advantages.  

The first evidence of clonal evolution in t-MN comes 

from the studies conducted by Wong et al., who 

described the role of TP53 mutations in the origin and 

evolution of t-MN in 2015.51 

Sequencing the genomes of 22 cases of t-MN, the 

Authors identified 7 carriers of specific TP53 mutations. 

Backtracking these mutations in paired DNA samples 

collected at the time of primary malignancy (Hodgkin 

and non-Hodgkin lymphoma), they identified the same 

mutations at very low variant allele frequencies (0.003–

0.7%) in 4 of the 7 patients, concluding that rare HSC 

carrying age-related TP53 mutations may be resistant to 

chemotherapy and expand preferentially after 

treatment.51 This paper was the first evidence that chemo 

and radiation therapy may promote the clonal selection 

and expansion of preexisting mutant HSC, favoring 

t‑MN development in a sort of Darwinian selection.  

Two years later, studying 14 t-MN patients with a 

primary hematologic malignancy using ultra-deep NGS, 

we identified two distinct clonal evolution models17 

(Figure 2).  

Mutations identified at the time of t-MN were tracked 

backward in bone marrow samples preceding secondary 

leukemia occurrence in 8 paired DNA samples. Somatic 

mutations were detectable before any cytotoxic 

treatment in three patients, while the t-MN clone was 

acquired in the remaining five patients. 

In our study, we confirmed the key role of somatic 

mutations of the TP53 gene in the clonal evolution of t-

MN and identified other genes, such as ASXL1, as 

pivotal players. 

Of note, we also identified a t-MN patient with a 

particular pattern of clonal evolution characterized by 

IDH1 and SRSF2 somatic mutations. Both mutations 

were somatically acquired because they were not 

detectable in the CD3+ T-lymphocyte population, and 

the VAFs (38% and 35%, respectively) suggested their 

cohabitation in the same clone.  

The IDH1 mutation was originally present at similar 
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Figure 2. Patterns of clonal evolution. A) In response to cytotoxic therapy, mutated clones might gain proliferation and survival advantages 

triggering the clonal expansion (left side) or the acquisition of new pathogenic mutations (right side) driving t-MN onset. B) Acquisition of 

novel mutations as a direct effect of cytotoxic treatment. Created with BioRender.com. 

 

VAF (35%) 9 years before t-MN onset. In contrast, the 

SRSF2 mutation was undetectable, suggesting a pre-

leukemic role for IDH1 mutation and a pathogenic role 

for SRSF2 mutation in a susceptible individual (Figure 

2A). 

In the second scenario, somatic mutations 

characterizing the t-MN clone, 5 out of 8 patients were 

not present at primary cancer diagnosis. They appeared 

only after chemo and/or radiation therapy as a direct 

effect of treatment, suggesting the dual role of cytotoxic 

therapy in t-MN pathogenesis (Figure 2B). 

To date, NGS technology has become commonly 

used in research and diagnostics too; thanks to it, the 

number of patients affected by t-MN who have been 

mutationally screened has increased enormously.  

Although many authors have demonstrated that the 

mutational burden of de novo myeloid neoplasm and t-

MN are similar, all agree in identifying a higher 

incidence of TP53 mutations in t-MN patients. 

TP53 mutations have been reported in 30-47% of t-

MN cases, more frequently associated with complex 

karyotype (80%).52 In t-MN, these mutations may also 

occur associated with TP53 deletion, copy-neutral loss of 

heterozygosity, and in a multihit state.53–56 

The TP53 gene encodes for the p53 tumor suppressor 

protein, which is activated in response to cellular stress. 

Subsequently, it activates the mechanisms of cell cycle 

arrest, senescence, and apoptosis, playing an essential 

role in controlling cell proliferation and differentiation.  

Many studies have shown the negative prognostic 

role of TP53 mutations in myeloid neoplasms, 

demonstrating poor response to standard cytotoxic 

therapy and lower median overall survival and disease-

free survival compared to unmutated patients.57–59  

Although revised diagnostic criteria for myeloid 

neoplasms (WHO and ICC) recommend major changes 

concerning TP53 mutations in relationship with their 

prognostic role, at least 2 mutations or 1 mutation with 

loss of TP53 wild-type or VAF≥ 50% as evidence of 

biallelic/multihit TP53 mutation,  Shah et al. recently 

hypothesized a different prognostic role for TP53 

mutations in the context of t-MN.57 Analyzing 488 t-MN 

patients found that TP53mut t-MN with VAF≥ 10% had 

significantly shorter survival than wild-type patients, 

while TP53mut with VAF < 10% was comparable to wild 

types. 

We now know that not only the presence of clonal 

hematopoiesis may play a role in the development of t-
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MNs but also that this role may be directly related to the 

specific treatment patients undergo. In this line, the direct 

link between clonal hematopoiesis, as a risk factor, and 

the specific treatment, as a selective agent, in clonal 

evolution and t-MN development is becoming evident.  

For this reason, several Authors are trying to focus on 

the study of a selected cohort of patients affected by the 

same primary tumor and homogeneously treated, 

comparing them with similar control cohorts. 

Sperling et al. recently reported the landscape of 416 

t-MN diagnosed and treated at MD Anderson Cancer 

Center60 to uncover the exposure relationships that 

provide selective advantage to specific CH mutations. As 

expected, the Authors found a predominance of TP53 

and PPM1D mutations and mutations in DTA genes 

(DNMT3A, TET2, and ASXL1). Complex karyotypes 

were enriched in patients treated with platinum agents, 

while chromosome 5 and 7 abnormalities were more 

frequent in patients treated with alkylating agents.  

They also identified an enrichment of TP53 mutations 

in patients with a previous history of multiple myeloma 

(MM) treated with thalidomide analogs and proteasome 

inhibitors.  

Since TP53 mutations have been associated with 

resistance to lenalidomide therapy in del(5q) MDS 

patients and secondary AML, the Authors tested, using 

long-term in vitro competition assays, on HSPC from 

mice engineered by CRISPR-Cas9 system, the effect of 

Thalidomide analogs on TP53 mutated cells.61,62 They 

found that lenalidomide, but not pomalidomide, can 

induce the clonal selection of TP53 mutated HSPCs, 

while none of the other cells, PPM1D, TET2, and 

DNMT3A mutated, showed the same positive selection 

under treatment pressure. These data were also 

reproduced in “in vivo” mouse models, highlighting the 

potential role of lenalidomide treatment in t-MN 

development and suggesting the usefulness of CHIP 

screening in the context of personalized therapies. 

 

Summary and Future Prospective. Although the main 

risk factors involved in therapy-related leukemogenesis 

seem to be identified, their specific weight about the 

whole panoply of the current cytotoxic therapies still 

needs to be well understood.  

In the near future, a comprehensive understanding of 

these heterogeneous interactions can be achieved by 

studying homogeneous cohorts of patients affected by 

the same primary disorder undergoing similar treatment 

strategies.  

In these rare and precious study cohorts, it will be our 

task to use all the available tools to identify patients at 

major risk of t-MN for whom certain cytotoxic 

treatments should be avoided and replaced with less 

leukemogenic approaches. 

In this line, high-throughput sequencing technologies, 

able to trace clonal evolution in single cells, are the most 

promising tool to achieve our goals.  

In the meantime, however, since CHIP has been 

recognized as a novel predisposing factor in the 

pathogenesis of t-MN, somatic mutation screening 

through NGS technologies should be carried out from the 

early diagnostic stage of primary cancers to guide the 

choice of treatment and minimize the risk of developing 

t-MN. 
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