MICRORNA-181A-3P AS A DIAGNOSTIC AND PROGNOSTIC BIOMARKER FOR ACUTE MYELOID LEUKEMIA

Main Article Content

Xiaoling Ma

Keywords

MicroRNAs; MiR-181a-3p; biomarkers; Leukemia, Myeloid, Acute; Treatment Outcome

Abstract

Background: Micro (mi)RNAs play an important role in the pathogenesis and development of acute myeloid leukemia (AML), and their abnormal expression may be sufficient to predict the prognosis and outcomes in AML patients. We evaluated the clinical diagnostic value of miRNA-181a-3p in predicting prognosis and outcomes in patients with AML.


Methods: A total of 119 newly diagnosed adult patients with AML and 60 healthy controls were recruited. Blood specimens were obtained from all AML patients at diagnosis, and 10 blood specimens were obtained on day 28 after induction chemotherapy. The controls also provided blood samples. MiR-181a-3p expression was quantified by PCR, and relative miRNA expression was determined using the comparative Ct method.


Results: Compared with healthy controls, the expression of miRNA-181a-3p was significantly increased in patients with AML. MiR-181a-3p expression could be used to discriminate AML patients from controls, with up-regulated expression correlating with favorable prognosis. Moreover, miRNA-181a-3p expression was significantly decreased in patients who achieved a complete response after induction chemotherapy. The multivariate Cox analysis highlighted the prognostic value of miR-181a-3p for patients with AML.


Conclusions: MiR-181a-3p may be clinically useful as a disease marker for AML, and enhanced the prediction of patient outcomes to chemotherapy.

Downloads

Download data is not yet available.


Abstract 1237
PDF Downloads 777
HTML Downloads 151

References

1. Coombs CC, Tallman MS, Levine RL: Molecular therapy for acute myeloid leukaemia. Nature reviews Clinical oncology 2016, 13(5):305-318. https://doi:10.1038/nrclinonc.2015.210
2. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD: The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011, 117(4):1121-1129. doi:10.1182/blood-2010-09-191312. https://doi:10.1182/blood-2010-09-191312
3. Wallace JA, O'Connell RM: MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 2017, 130(11):1290-1301. https://doi:10.1182/blood-2016-10-697698
4. Diaz-Beya M, Brunet S, Nomdedeu J, Tejero R, Diaz T, Pratcorona M, Tormo M, Ribera JM, Escoda L, Duarte R et al: MicroRNA expression at diagnosis adds relevant prognostic information to molecular categorization in patients with intermediate-risk cytogenetic acute myeloid leukemia. Leukemia 2014, 28(4):804-812. https://doi:10.1038/leu.2013.281
5. Chuang MK, Chiu YC, Chou WC, Hou HA, Chuang EY, Tien HF: A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients. Leukemia 2015, 29(5):1051-1059. https://doi:10.1038/leu.2014.333
6. Yang Z, Wan X, Gu Z, Zhang H, Yang X, He L, Miao R, Zhong Y, Zhao H: Evolution of the mir-181 microRNA family. Computers in biology and medicine 2014, 52:82-87. https://doi:10.1016/j.compbiomed.2014.06.004
7. Su R, Lin HS, Zhang XH, Yin XL, Ning HM, Liu B, Zhai PF, Gong JN, Shen C, Song L et al: MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 2015, 34(25):3226-3239. https://doi:10.1038/onc.2014.274
8. Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X et al: MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell death & disease 2019, 10(5):365. https://doi:10.1038/s41419-019-1599-9
9. Sun XX, Zhang SS, Dai CY, Peng J, Pan Q, Xu LF, Ma XL: LukS-PV-Regulated MicroRNA-125a-3p Promotes THP-1 Macrophages Differentiation and Apoptosis by Down-Regulating NF1 and Bcl-2. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2017, 44(3):1093-1105. https://doi:10.1159/000485415
10. Bullinger L, Dohner K, Dohner H: Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2017, 35(9):934-946. https://doi:10.1200/jco.2016.71.2208
11. Ferrando AA, Lopez-Otin C: Clonal evolution in leukemia. Nature medicine 2017, 23(10):1135-1145. https://doi:10.1038/nm.4410
12. Short NJ, Rytting ME, Cortes JE: Acute myeloid leukaemia. Lancet (London, England) 2018, 392(10147):593-606. https://doi:10.1016/s0140-6736(18)31041-9
13. Medinger M, Passweg JR: Acute myeloid leukaemia genomics. British journal of haematology 2017, 179(4):530-542. https://doi:10.1111/bjh.14823
14. de Leeuw DC, Verhagen HJ, Denkers F, Kavelaars FG, Valk PJ, Schuurhuis GJ, Ossenkoppele GJ, Smit L: MicroRNA-551b is highly expressed in hematopoietic stem cells and a biomarker for relapse and poor prognosis in acute myeloid leukemia. Leukemia 2016, 30(3):742-746. https://doi:10.1038/leu.2015.160
15. Marcucci G, Radmacher MD, Mrozek K, Bloomfield CD: MicroRNA expression in acute myeloid leukemia. Current hematologic malignancy reports 2009, 4(2):83-88. https://doi:10.1007/s11899-009-0012-7
16. Roth E, Cao J: MiR-181 suppresses metastasis via MMP-14. Aging 2015, 7(10):740-741. https://doi:10.18632/aging.100824
17. Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH et al: Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010, 28(36):5257-5264. https://doi:10.1200/jco.2010.29.2953
18. Butrym A, Rybka J, Baczynska D, Poreba R, Mazur G, Kuliczkowski K: Expression of microRNA-181 determines response to treatment with azacitidine and predicts survival in elderly patients with acute myeloid leukaemia. Oncology letters 2016, 12(4):2296-2300. https://doi:10.3892/ol.2016.4970
19. Weng H, Lal K, Yang FF, Chen J: The pathological role and prognostic impact of miR-181 in acute myeloid leukemia. Cancer genetics 2015, 208(5):225-229. https://doi:10.1016/j.cancergen.2014.12.006
20. Zhang L, Lei Q, Wang H, Xu C, Liu T, Kong F, Yang C, Yan G, Sun L, Zhao A et al: Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease. Theranostics 2019, 9(1):196-209. https://doi:10.7150/thno.27550
21. Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, Kobayashi H, Saito T, Iwakura Y, Kurokawa M: Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. The Journal of clinical investigation 2014, 124(2):528-542. https://doi:10.1172/jci68101
22. Bosman MC, Schuringa JJ, Vellenga E: Constitutive NF-kappaB activation in AML: Causes and treatment strategies. Critical reviews in oncology/hematology 2016, 98:35-44. https://doi:10.1016/j.critrevonc.2015.10.001
23. Brahler S, Ising C, Barrera Aranda B, Hohne M, Schermer B, Benzing T, Brinkkoetter PT: The NF-kappaB essential modulator (NEMO) controls podocyte cytoskeletal dynamics independently of NF-kappaB. American journal of physiology Renal physiology 2015, 309(7):F617-626. https://doi:10.1152/ajprenal.00059.2015