Main Article Content

Vincenzo De Sanctis


COVID-19, SARS-CoV-2, β- thalassemia, sickle cell disease, patients' characteristics, clinical course, risk factors


Objectives: This study aims to investigate, retrospectively, the epidemiological and clinical characteristics, laboratory results, radiologic findings and outcomes of novel coronavirus disease-19 (COVID-19) in patients with transfusion dependent ? thalassemia (?-thalassemia major-TM), non-transfusion dependent ? thalassemia (?-thalassemia intermedia -TI) and sickle cell disease (SCD). Design, setting: A total of 17 Centers, from 10 countries, following 9,499 patients with hemoglobinopathies participated in the survey. Main outcome measures: Clinical, laboratory and radiologic findings and outcomes of patients with COVID-19 were collected from medical records and summarized. Results: A total of 13 patients, 7 with TM, 3 with TI and 3 with SCD, with confirmed COVID-19, were identified from 6 Centers from different countries. The overall mean age of patients was 33.7±12.3 years (range:13-66); 9/13 (69.2%) patients were females. The commonest symptoms in the 10 symptomatic patients were: fever (80%), cough (70%), headache (60%), fatigue (60%), gastrointestinal symptoms (diarrhea /vomiting/abdominal pain; 50%), tachypnea/dyspnea (40%), and sore throat (40%). Six patients had pneumonia (unilateral, bilateral or multiple opacity) and 4 needed oxygen therapy. An oxygen saturation ? 93% was documented in 3 patients at diagnosis. 6/10 patients had an exacerbation of anemia (2 with SCD, associated with back and chest pain in 1 patient), and 3 (<30%) had a decreased absolute number of lymphocytes. Increased C-reactive protein and D-dimers were the most common laboratory findings (66.6 %). Conclusions: The clinical presentation for COVID-19 in patients with ?-thalassemia and SCD varies. Patients with mild/ordinary COVID-19 infection appear to have clinical symptoms and laboratory findings common to other viral respiratory infections. One 30 year old TM female patient with diabetes and chronic kidney disease. For a better understanding of COVID-19 in patients with hemoglobinopathies, further epidemiologic and clinical studies in a larger cohort of patients are required.


Download data is not yet available.
Abstract 1397 | PDF Downloads 798 HTML Downloads 115


1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-513.

2. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schröder AS, Burdelski C, de Heer G, Nierhaus A, Frings D, Pfefferle S, Becker H, Bredereke-Wiedling H, de Weerth A, Paschen HR, Sheikhzadeh-Eggers S, Stang A, Schmiedel S, Bokemeyer C, Addo MM, Aepfelbacher M, Püschel K, Kluge S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann Intern Med. 2020;M20-2003. doi:10.7326/M20-2003.

3. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390:311?323.

4. Karimi M, De Sanctis V. Implications of SARSr-CoV 2 infection in thalassemias: Do patients fall into the “high clinical risk” category ? Acta Biomed. 2020;91:50-56.

5.McCloskey KA, Meenan J, Hall R, Tsitsikas DA. COVID-19 Infection and Sickle Cell Disease: A UK Centre Experience. Br J Haematol. 2020;10.1111/bjh.16779. doi:10.1111/bjh.16779.

6. Hussain FA, Njoku FU, Saraf SL, Molokie RE, Gordeuk VR, Han J. COVID-19 infection in patients with sickle cell disease. Br J Haematol. 2020;10.1111/bjh.16734. doi:10.1111/bjh.16734.

7. Nur E, Gaartman AE, van Tuijn CFJ, Tang MW, Biemond BJ. Vaso-occlusive crisis and acute chest syndrome in sickle cell disease due to 2019 novel coronavirus disease (COVID-19). Am J Hematol. 2020; 95:725?726.

8. Odièvre MH, de Marcellus C, Ducou Le Pointe H, Allali S, Romain AS, Youn J, Taytard J, Nathan N, Corvol H. Dramatic improvement after tocilizumab of severe COVID-19 in a child with sickle cell disease and acute chest syndrome. Am J Hematol. 2020;10.1002/ajh.25855. doi:10.1002/ajh.25855.

9. Motta I, Migone De Amicis M, Pinto VM, Balocco M, Longo F, Bonetti F, Gianesin B, Graziadei G, Cappellini MD, De Franceschi L, Piga A, Forni GL. SARS-CoV-2 infection in beta thalassemia: Preliminary data from the Italian experience. Am J Hematol. 2020;10.1002/ajh.25840. doi:10.1002/ajh.25840.

10. Kattamis C, Metaxotou-Mavromati A, Ladis VH. Tsiarta HS. Laskari S, Kanavakis E. The clinical phenotype of ? and ?? thalassemias in Greece. Eur J Pediatr.1982;139:135–138.

11. Karimi M, Cohan N, De Sanctis V, Mallat NS, Taher A. Guidelines for diagnosis and management of Beta-thalassemia intermedia. Pediat Hematol Oncol. 2014;31:583-96.

12. Quinn CT. Minireview: Clinical severity in sickle cell disease: the challenges of definition and prognostication. Exp Biol Med (Maywood). 2016;241:679-688.

13. World Health Organization. Laboratory diagnostics for novel coronavirus. 2020. https://www. who.int/healthtopics/ coronavirus/laboratory-diagnostics-for-novelcoronavirus. Accessed 6 February 2020.

14. National Health Commission of the People’s Republic of China. National recommendations for diagnosis and treatment of respiratory infections caused by 2019-nCoV (the 6th edition). 18–20 February 2020. Available from: http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d 329df351d7da8aefc2/ files/ b218cfeb1bc54639af227f922b f6b817.pdf.

15. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. 2020;https://www.who.int/ publications-detail/clinical-management-of-severe-acute-respiratoryinfection- when-novel-coronavirus-(ncov)-infection-is-suspected.

16. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, von Groote TC, Jayarajah U, Weerasekara I, Esfahani MA, Civile VT, Marusic A, Jeroncic A, Carvas Junior N, Pericic TP, Zakarija-Grkovic I, Meirelles Guimarães SM, Luigi Bragazzi N, Bjorklund M, Sofi-Mahmudi A, Altujjar M, Tian M, Arcani DMC, O'Mathúna DP, Marcolino MS. Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J Clin Med. 2020 Mar 30;9(4):941.doi: 10.3390/jcm9040941.

17. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626-638. doi:10.1038/nri.2016.90.

18. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180. doi:10.2807/1560-7917.ES.2020.25.10.2000180.

19. Ki M; Task Force for 2019-nCoV. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health. 2020;42:e2020007. doi:10.4178/ epih. e2020007.

20. Cereda D, Tirani M, Rovida F, Demicheli V, Ajelli M, Poletti P, Trentini F, Guzzetta G, Marziano V, Barone A, Magoni M, Deandrea S, Diurno G, Lombardo M, Faccini M, Pan A, Bruno R, Pariani E, Grasselli G, Piatti A, Gramegna M, Baldanti F, Melegaro A, Merler S. The early phase of the COVID-19 outbreak in Lombardy, Italy 2020. Available from: https://arxiv.org/abs/2003.09320v1.

21. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020:2020.01.31.929042.

22. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol.2020;5:335?337.

23. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowd sourced data: a population-level observational study. The Lancet Digital Health. 2020.

24. Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8(1):e35. Published 2020 Mar 24.

25. Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X , Zhang Z, Liu L, Liu T, Liu Y, He Y, Sun B, Wei M, Yang G, Wang X, Zhang L, Zhou X, Xing M, Wang PG. Relationship between the ABO blood group and the COVID-19 susceptibility. [Accessed on: 23/03/2020.]medRxiv 2020.03.11. 20031096; doi: https://doi.org/ 10.1101/2020.03.11.20031096.

26. Rubin LG, Schaffner W. Care of the asplenic patient. New Engl J Med. 2014;371:349-356.

27. Leone G, Pizzigallo E. Bacterial Infections Following Splenectomy for Malignant and Nonmalignant Hematologic Diseases Mediterr J Hematol Infect Dis. 2015;7(1): e2015057. Published online 2015 Oct 13. doi: 10.4084/MJHID.2015.057.
28. Haemoglobinopathy HCCs: Advice on COVID-19 in patients with Sickle Cell Disease and Thalassaemia Haemoglobinopathy Co-ordinating Centres V9 20 April 2020. https://b-s-h.org.uk/media/18244/hbp-hccs-response-to-covid-v9-200420.pdf.

29. Heilbronner C, Berteloot L, Tremolieres P, Dupic L, De Saint Blanquat L, Lesage F, Odièvre MH, de Marcellus C, Fourgeaud J, de Montalembert M, Grimaud M, Moulin F, Renolleau S, Allali S, Oualha M. Patients with Sickle cell disease and suspected COVID-19 in a pediatric ICU. Br J Haematol. 2020; 10.1111/ bjh.16802. doi:10.1111/bjh.16802.

30.Vives Corrons JL, De Sanctis V. Rare Anaemias, Sickle-Cell Disease and COVID-19. Acta Biomed. 2020;91(2):216?217.Published 2020 May 11.doi:10.23750/abm.v91i2.9532.

31. Haemoglobinopathy Co-ordinating Centres. https://www. england.nhs.uk/commissioning/spec-services/npc-crg/ blood-and-infection-group-f/f05/.

32. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56: 308–321.

Most read articles by the same author(s)

1 2 3 > >>