Focusing On A Unique Innate Memory Cell Population Of Natural Killer Cells In The Fight Against COVID-19: Harnessing The Ubiquity Of Cytomegalovirus Exposure Memory Cell Population Of Natural Killer Cells in COVID-19 and Cytomegalovirus Exposure

Main Article Content

SUPARNO CHAKRABARTI

Keywords

Natural Killer cells, CoV-19, Cytomegalovirus

Downloads

Download data is not yet available.
Abstract 511 | PDF Downloads 293 HTML Downloads 75

References

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al: A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020, 382(8):727-733.
2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC et al: Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020.
3. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H et al: Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest 2020.
4. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D et al: Characteristics of COVID-19 infection in Beijing. J Infect 2020, 80(4):401-406.
5. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ: The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents 2020:105954.
6. Sun JC, Beilke JN, Lanier LL: Adaptive immune features of natural killer cells. Nature 2009, 457(7229):557-561.
7. Guma M, Budt M, Saez A, Brckalo T, Hengel H, Angulo A, Lopez-Botet M: Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 2006, 107(9):3624-3631.
8. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Verges S, Lanier LL, Weisdorf D, Miller JS: Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 2012, 119(11):2665-2674.
9. Jaiswal SR, Bhakuni P, Bhagawati G, Chakrabarti A, Chakrabarti S: CTLA4Ig-based T-cell costimulation blockade is associated with reduction of adenovirus viremia following post-transplantation cyclophosphamide-based haploidentical transplantation. Bone Marrow Transplant 2019.
10. Jaiswal SR, Bhakuni P, Bhagwati G, Aiyar HM, Chakrabarti A, Chakrabarti S: Alterations In NKG2A and NKG2C Subsets Of Natural Killer Cells following Epstein Barr Virus Reactivation In CTLA4Ig Based Haploidentical Transplantation Is Associated With Increased Chronic Graft-Versus-Host Disease. Transplantation 2019.
11. Jaiswal SR, Bhakuni P, Joy A, Kaushal S, Sudhish D, Aiyer HM, Chakrabarti S: Early Expansion of CD56dimNKG2Alow with Late Surge and Persistence of CD56dimNKG2AnegNKG2Cbright NK Cells Attenuate Cytomegalovirus (CMV) Replication and Recurrence As Well As Leukemia Relapse Following Haploidentical HSCT with T Cell Co-Stimulation Blockade and PTCy. Biology of Blood and Marrow Transplantation 2019, 25(3):S328.
12. Goodier MR, Rodriguez-Galan A, Lusa C, Nielsen CM, Darboe A, Moldoveanu AL, White MJ, Behrens R, Riley EM: Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. J Immunol 2016, 197(1):313-325.
13. Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaelsson J, Malmberg KJ, Klingstrom J, Ahlm C et al: Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 2011, 208(1):13-21.
14. Gondois-Rey F, Cheret A, Granjeaud S, Mallet F, Bidaut G, Lecuroux C, Ploquin M, Muller-Trutwin M, Rouzioux C, Avettand-Fenoel V et al: NKG2C(+) memory-like NK cells contribute to the control of HIV viremia during primary infection: Optiprim-ANRS 147. Clin Transl Immunology 2017, 6(7):e150.
15. Geary CD, Sun JC: Memory responses of natural killer cells. Semin Immunol 2017, 31:11-19.
16. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z: Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020.
17. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL: Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 1999, 18(15):4250-4260.
18. Nattermann J, Nischalke HD, Hofmeister V, Kupfer B, Ahlenstiel G, Feldmann G, Rockstroh J, Weiss EH, Sauerbruch T, Spengler U: HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells. Antivir Ther 2005, 10(1):95-107.
19. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am J Clin Pathol 2004, 121(4):507-511.
20. Dou Y, Fu B, Sun R, Li W, Hu W, Tian Z, Wei H: Influenza vaccine induces intracellular immune memory of human NK cells. PLoS One 2015, 10(3):e0121258.
21. Wagstaffe HR, Mooney JP, Riley EM, Goodier MR: Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018, 7(1):e1010.
22. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Jacobs C, Xavier RJ, van der Meer JW, van Crevel R, Netea MG: BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin Immunol 2014, 155(2):213-219.
23. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S et al: Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 2016, 8(357):357ra123.
24. Chakravarti A, Kashyap B, Matlani M: Cytomegalovirus infection: An Indian perspective. Indian Journal of Medical Microbiology 2009, 27(1):3-11.