PHENOTYPIC AND MOLECULAR DETECTION OF BIOFILM FORMATION IN METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SOURCE IN ERBIL CITY

Main Article Content

Pishtiwan Ahmad

Keywords

MRSA, MSSA, biofilm-related genes, antibiotic resistance

Abstract

Abstract.


Background: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy.


Objectives: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains.


Methods: In this study, 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA) were included. S. aureus was identified by molecular and conventional methods. Antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD gene.


Results: Of the total 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin and none of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6 %), (33.3% %) respectively. The MRSA strains had significantly higher ability of biofilm formation than MSSA strains (P = 0.0079). The biofilm encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates 42 (84%), were found to be positive for the icaA. The prevalence rates of the icaB, icaC, and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%) respectively.


Conclusions: The prevalence of biofilm encoding genes, which are associated with multidrug resistance in S. aureus strains, is high. Therefore, identification of epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.

Downloads

Download data is not yet available.


Abstract 603
PDF Downloads 660
HTML Downloads 279

References

ALLI, O. A. T., OGBOLU, D. O., SHITTU, A. O., OKORIE, A. N., AKINOLA, J. O. & DANIEL, J. B. 2015. Association of virulence genes with mecA gene in Staphylococcus aureus isolates from Tertiary Hospitals in Nigeria. Indian Journal of Pathology and Microbiology, 58, 464.
ARORA, S., DEVI, P., ARORA, U. & DEVI, B. 2010. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in a tertiary care hospital in Northern India. Journal of laboratory physicians, 2, 078-081.
AZMI, K., QREI, W. & ABDEEN, Z. 2019. Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genomics, 20, 578.
BLAIOTTA, G., ERCOLINI, D., PENNACCHIA, C., FUSCO, V., CASABURI, A., PEPE, O. & VILLANI, F. 2004. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB‐8802. Journal of Applied Microbiology, 97, 719-730.
BOLES, B. R. & HORSWILL, A. R. 2011. Staphylococcal biofilm disassembly. Trends in microbiology, 19, 449-455.
CHAUDHARI, C. N., TANDEL, K., GROVER, N., BHATT, P., SAHNI, A. K., SEN, S. & PRAHRAJ, A. K. 2014. In vitro vancomycin susceptibility amongst methicillin resistant Staphylococcus aureus. Med J Armed Forces India, 70, 215-9.
CLSI, C. 2016. Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute, 35, 16-38.
CUE, D. R., LEI, M. G. & LEE, C. 2012. Genetic regulation of the intercellular adhesion locus in staphylococci. Frontiers in cellular and infection microbiology, 2, 38.
DIBAH, S., ARZANLOU, M., JANNATI, E. & SHAPOURI, R. 2014. Prevalence and antimicrobial resistance pattern of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in Ardabil, Iran. Iranian journal of microbiology, 6, 163.
FOSTER, T. J., GEOGHEGAN, J. A., GANESH, V. K. & HÖÖK, M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature reviews microbiology, 12, 49-62.
GORDON, R. J. & LOWY, F. D. 2008. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical infectious diseases, 46, S350-S359.
GOUDARZI, M., MOHAMMADI, A., AMIRPOUR, A., FAZELI, M., NASIRI, M. J., HASHEMI, A. & GOUDARZI, H. 2019. Genetic diversity and biofilm formation analysis of Staphylococcus aureus causing urinary tract infections in Tehran, Iran. The Journal of Infection in Developing Countries, 13, 777-785.
GOWRISHANKAR, S., KAMALADEVI, A., BALAMURUGAN, K. & PANDIAN, S. K. 2016. In vitro and in vivo biofilm characterization of methicillin-resistant Staphylococcus aureus from patients associated with pharyngitis infection. BioMed research international, 2016.
HAGHI GHAHREMANLOI OLIA, A., GHAHREMANI, M., AHMADI, A. & SHARIFI, Y. 2020. Comparison of biofilm production and virulence gene distribution among community- and hospital-acquired Staphylococcus aureus isolates from northwestern Iran. Infection, Genetics and Evolution, 81, 104262.
IORIO, N., AZEVEDO, M. B., FRAZÃO, V. H., BARCELLOS, A. G., BARROS, E. M., PEREIRA, E. M., DE MATTOS, C. S. & DOS SANTOS, K. 2011. Methicillin-resistant Staphylococcus epidermidis carrying biofilm formation genes: detection of clinical isolates by multiplex PCR. Int Microbiol, 14, 13-7.
JAMAL, A. & DAVID, B. 2007. Biofilm formation by enterococci. Journal of Medical Microbiology, 56, 1581-1588.
KHASAWNEH, A. I., HIMSAWI, N., ABU-RAIDEH, J., SALAMEH, M. A., AL-TAMIMI, M., AL HAJ MAHMOUD, S. & SALEH, T. 2020. Status of Biofilm-Forming Genes among Jordanian Nasal Carriers of Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. Iran Biomed J, 24, 386-98.
KOT, B., WIERZCHOWSKA, K., PIECHOTA, M. & GRUŻEWSKA, A. 2020. Antimicrobial resistance patterns in methicillin-resistant Staphylococcus aureus from patients hospitalized during 2015–2017 in hospitals in Poland. Medical Principles and Practice, 29, 61-68.
KOUIDHI, B., ZMANTAR, T., HENTATI, H. & BAKHROUF, A. 2010. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microbial pathogenesis, 49, 14-22.
KUMURYA, A., GWARZO, M. & UBA, A. 2015. One Step PCR for Detection of Staphylococcus aureus specific Sequence gene and mecA gene. International Journal of Advanced Materials Research, 1, 73-79.
LESHEM, T., SCHNALL, B.-S., AZRAD, M., BAUM, M., ROKNEY, A. & PERETZ, A. 2022. Incidence of biofilm formation among MRSA and MSSA clinical isolates from hospitalized patients in Israel. Journal of Applied Microbiology, 133, 922-929.
LISTER, J. L. & HORSWILL, A. R. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers in cellular and infection microbiology, 4, 178.
MANOHARAN, A., PREMALATHA, K., CHATTERJEE, S., MATHAI, D. & GROUP, S. S. 2011. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian journal of medical microbiology, 29, 161.
MOSES, V. K., KANDI, V. & RAO, S. K. D. 2020. Minimum inhibitory concentrations of vancomycin and daptomycin against methicillin-resistant Staphylococcus Aureus isolated from various clinical specimens: A study from south india. Cureus, 12.
MULVEY, M. R. & SIMOR, A. E. 2009. Antimicrobial resistance in hospitals: how concerned should we be? Cmaj, 180, 408-415.
NAOREM, R. S., URBAN, P., GOSWAMI, G. & FEKETE, C. 2020. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. 3 Biotech, 10, 401.
NEYRA, R. C., FRISANCHO, J. A., RINSKY, J. L., RESNICK, C., CARROLL, K. C., RULE, A. M., ROSS, T., YOU, Y., PRICE, L. B. & SILBERGELD, E. K. 2014. Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA). Environmental Health Perspectives, 122, 471-477.
NOURBAKHSH, F. & NAMVAR, A. E. 2016. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and infection control, 11.
OMIDI, M., FIROOZEH, F., SAFFARI, M., SEDAGHAT, H., ZIBAEI, M. & KHALEDI, A. 2020. Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Research Notes, 13, 19.
PATHARE, N. A., TEJANI, S., ASOGAN, H., AL MAHRUQI, G., AL FAKHRI, S., ZAFARULLA, R. & PATHARE, A. V. 2015. Comparison of methicillin resistant Staphylococcus aureus in healthy community hospital visitors [CA-MRSA] and hospital staff [HA-MRSA]. Mediterranean Journal of Hematology and Infectious Diseases, 7.
PIECHOTA, M., KOT, B., FRANKOWSKA-MACIEJEWSKA, A., GRUŻEWSKA, A. & WOŹNIAK-KOSEK, A. 2018. Biofilm formation by methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed Research International, 2018.
RAHIMI, F., BOUZARI, M., KATOULI, M. & POURSHAFIE, M. R. 2013. Antibiotic Resistance Pattern of Methicillin Resistant and Methicillin Sensitive Staphylococcus aureus Isolates in Tehran, Iran. 6, 144-149.
RICCIARDI, W., GIUBBINI, G. & LAURENTI, P. 2016. Surveillance and control of antibiotic resistance in the Mediterranean region. Mediterranean Journal of Hematology and Infectious Diseases, 8.
SADERI, H., OULIA, P. & JALALI, N. M. 2009. Difference in epidemiology and antibiotic susceptibility of methicillin resistant and methicillin susceptible Staphylococcus aureus isolates.
SCHERR, T. D., HEIM, C. E., MORRISON, J. M. & KIELIAN, T. 2014. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Frontiers in immunology, 5, 37.
SHIVAEE, A., SADEGHI KALANI, B., TALEBI, M. & DARBAN-SAROKHALIL, D. 2019. Does biofilm formation have different pathways in Staphylococcus aureus? Iran J Basic Med Sci, 22, 1147-1152.
STEFANAKI, C., IERONYMAKI, A., MATOULA, T., CARONI, C., POLYTHODORAKI, E., CHRYSSOU, S. E., KONTOCHRISTOPOULOS, G. & ANTONIOU, C. 2017. Six-Year Retrospective Review of Hospital Data on Antimicrobial Resistance Profile of Staphylococcus aureus Isolated from Skin Infections from a Single Institution in Greece. Antibiotics (Basel), 6.
SZABÓ, J., DOMBRÁDI, Z., DOBAY, O., OROSI, P., KÓNYA, J., NAGY, K. & ROZGONYI, F. 2009. Phenotypic and genetic characterisation of methicillin-resistant Staphylococcus aureus strains isolated from the university hospitals of Debrecen. Eur J Clin Microbiol Infect Dis, 28, 129-36.
TANG, J., CHEN, J., LI, H., ZENG, P. & LI, J. 2013. Characterization of adhesin genes, staphylococcal nuclease, hemolysis, and biofilm formation among Staphylococcus aureus strains isolated from different sources. Foodborne Pathogens and Disease, 10, 757-763.
WALTER, J., NOLL, I., FEIG, M., WEISS, B., CLAUS, H., WERNER, G., ECKMANNS, T., HERMES, J. & ABU SIN, M. 2017. Decline in the proportion of methicillin resistance among Staphylococcus aureus isolates from non-invasive samples and in outpatient settings, and changes in the co-resistance profiles: an analysis of data collected within the Antimicrobial Resistance Surveillance Network, Germany 2010 to 2015. BMC Infect Dis, 17, 169.
YOUSEFI, M., POURMAND, M. R., FALLAH, F., HASHEMI, A., MASHHADI, R. & NAZARI-ALAM, A. 2016. Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iranian journal of public health, 45, 485.