CURING HEMOGLOBINOPATHIES: CHALLENGES AND ADVANCES OF CONVENTIONAL AND NEW GENE THERAPY APPROACHES.

Main Article Content

Irene Motta
Valentina Ghiaccio
Andrea Cosentino
Laura Breda

Keywords

Abstract

Inherited hemoglobin disorders, including beta-thalassemia (BT) and sickle-cell disease (SCD) are the most common monogenic diseases worldwide, with a global carrier frequency of over 5%. With migration they are becoming more common worldwide, making their management and care an increasing concern for health care systems.


BT is characterized by an imbalance in the ?/?-globin chain ratio, ineffective erythropoiesis, chronic hemolytic anemia, and compensatory haemopoietic expansion. Globally, there are over 25,000 births each year with transfusion-dependent thalassemia (TDT). The current available treatment for TDT is lifelong transfusions and iron chelation therapy or allogenic bone marrow as curative option. SCD affects 300 million people worldwide  and severely impacts the quality of life of patients, who experience unpredictable, recurrent acute and chronic severe pain, stroke, infections, pulmonary disease, kidney disease, retinopathy, and other complications. While survival has been dramatically extended, quality of life is markedly reduced by disease- and treatment-associated morbidity.


The development of safe, tissue specific and efficient vectors, and efficient gene editing technologies have led to the development of several gene therapy trials for BT and SCD. Yet, the complexity of the approach presents its hurdles. Fundamental factors at play include the requirement for myeloablation on a patient with a benign disease, the age of the patient and consequent bone marrow microenvironment. A successful path from proof-of-concept studies to commercialization must render gene therapy a sustainable and accessible approach for a large number of patients. Furthermore, the cost of these therapies is a considerable challenge for the health care system. While new promising therapeutic options are emerging and many others are on the pipeline5, gene therapy can potentially cure patients. We herein provide an overview of the most recent potentially curative therapies for hemoglobinopathies and a summary of the challenges that these approaches entail.

Downloads

Download data is not yet available.


Abstract 2051
PDF Downloads 1461
HTML Downloads 655

References

1. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018;391(10116):155-167.
2. Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017;376(16):1561-1573.
3. Piga A, Perrotta S, Gamberini MR, Voskaridou E, Melpignano A, Filosa A, Caruso V, Pietrangelo A, Longo F, Tartaglione I, Borgna-Pignatti C, Zhang X, Laadem A, Sherman ML, Attie KM. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with beta-thalassemia. Blood. 2019;133(12):1279-1289.
4. Cappellini MD, Porter J, Origa R, Forni GL, Voskaridou E, Galacteros F, Taher AT, Arlet JB, Ribeil JA, Garbowski M, Graziadei G, Brouzes C, Semeraro M, Laadem A, Miteva D, Zou J, Sung V, Zinger T, Attie KM, Hermine O. Sotatercept, a novel transforming growth factor beta ligand trap, improves anemia in beta-thalassemia: a phase II, open-label, dose-finding study. Haematologica. 2019;104(3):477-484.
5. Cappellini MD, Motta I. New therapeutic targets in transfusion-dependent and -independent thalassemia. Hematology Am Soc Hematol Educ Program. 2017;2017(1):278-283.
6. Lucarelli G, Galimberti M, Polchi P, Angelucci E, Baronciani D, Giardini C, Politi P, Durazzi SM, Muretto P, Albertini F. Bone marrow transplantation in patients with thalassemia. N Engl J Med. 1990;322(7):417-421.
7. Baronciani D, Angelucci E, Potschger U, Gaziev J, Yesilipek A, Zecca M, Orofino MG, Giardini C, Al-Ahmari A, Marktel S, de la Fuente J, Ghavamzadeh A, Hussein AA, Targhetta C, Pilo F, Locatelli F, Dini G, Bader P, Peters C. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000-2010. Bone Marrow Transplant. 2016;51(4):536-541.
8. Angelucci E, Pilo F, Coates TD. Transplantation in thalassemia: Revisiting the Pesaro risk factors 25 years later. Am J Hematol. 2017;92(5):411-413.
9. Lucarelli G, Isgro A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825.
10. Li C, Mathews V, Kim S, George B, Hebert K, Jiang H, Li C, Zhu Y, Keesler DA, Boelens JJ, Dvorak CC, Agarwal R, Auletta JJ, Goyal RK, Hanna R, Kasow K, Shenoy S, Smith AR, Walters MC, Eapen M. Related and unrelated donor transplantation for beta-thalassemia major: results of an international survey. Blood Adv. 2019;3(17):2562-2570.
11. Zynteglo. European Medicine Agency (EMA). https://www.ema.europa.eu/en/medicines/human/EPAR/zynteglo. Accessed October 20, 2019.
12. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318-322.
13. Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Deichmann A, Denaro M, de Dreuzy E, Finer M, Fronza R, Gillet-Legrand B, Joubert C, Kutner R, Leboulch P, Maouche L, Paulard A, Pierciey FJ, Rothe M, Ryu B, Schmidt M, von Kalle C, Payen E, Veres G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of beta-thalassemia and sickle cell disease. Curr Gene Ther. 2015;15(1):64-81.
14. Miccio A, Cesari R, Lotti F, Rossi C, Sanvito F, Ponzoni M, Routledge SJ, Chow CM, Antoniou MN, Ferrari G. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105(30):10547-10552.
15. Lidonnici MR, Paleari Y, Tiboni F, Mandelli G, Rossi C, Vezzoli M, Aprile A, Lederer CW, Ambrosi A, Chanut F, Sanvito F, Calabria A, Poletti V, Mavilio F, Montini E, Naldini L, Cristofori P, Ferrari G. Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for beta-Thalassemia. Mol Ther Methods Clin Dev. 2018;11:9-28.
16. Boulad F, Wang X, Qu J, Taylor C, Ferro L, Karponi G, Bartido S, Giardina P, Heller G, Prockop SE, Maggio A, Sadelain M, Riviere I. Safe mobilization of CD34+ cells in adults with beta-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood. 2014;123(10):1483-1486.
17. Romero Z, Urbinati F, Geiger S, Cooper AR, Wherley J, Kaufman ML, Hollis RP, de Assin RR, Senadheera S, Sahagian A, Jin X, Gellis A, Wang X, Gjertson D, Deoliveira S, Kempert P, Shupien S, Abdel-Azim H, Walters MC, Meiselman HJ, Wenby RB, Gruber T, Marder V, Coates TD, Kohn DB. beta-globin gene transfer to human bone marrow for sickle cell disease. J Clin Invest. 2013.
18. Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E, Semeraro M, Moshous D, Lefrere F, Puy H, Bourget P, Magnani A, Caccavelli L, Diana JS, Suarez F, Monpoux F, Brousse V, Poirot C, Brouzes C, Meritet JF, Pondarre C, Beuzard Y, Chretien S, Lefebvre T, Teachey DT, Anurathapan U, Ho PJ, von Kalle C, Kletzel M, Vichinsky E, Soni S, Veres G, Negre O, Ross RW, Davidson D, Petrusich A, Sandler L, Asmal M, Hermine O, De Montalembert M, Hacein-Bey-Abina S, Blanche S, Leboulch P, Cavazzana M. Gene Therapy in Patients with Transfusion-Dependent beta-Thalassemia. N Engl J Med. 2018;378(16):1479-1493.
19. Marktel S, Scaramuzza S, Cicalese MP, Giglio F, Galimberti S, Lidonnici MR, Calbi V, Assanelli A, Bernardo ME, Rossi C, Calabria A, Milani R, Gattillo S, Benedicenti F, Spinozzi G, Aprile A, Bergami A, Casiraghi M, Consiglieri G, Masera N, D'Angelo E, Mirra N, Origa R, Tartaglione I, Perrotta S, Winter R, Coppola M, Viarengo G, Santoleri L, Graziadei G, Gabaldo M, Valsecchi MG, Montini E, Naldini L, Cappellini MD, Ciceri F, Aiuti A, Ferrari G. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ss-thalassemia. Nat Med. 2019;25(2):234-241.
20. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253-257.
21. Bernardo ME, Aiuti A. The Role of Conditioning in Hematopoietic Stem-Cell Gene Therapy. Hum Gene Ther. 2016;27(10):741-748.
22. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, Apperley J, Slavin S, Pasquini M, Sandmaier BM, Barrett J, Blaise D, Lowski R, Horowitz M. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628-1633.
23. Lucarelli G, Gaziev J. Advances in the allogeneic transplantation for thalassemia. Blood Rev. 2008;22(2):53-63.
24. Jacobsohn DA, Duerst R, Tse W, Kletzel M. Reduced intensity haemopoietic stem-cell transplantation for treatment of non-malignant diseases in children. Lancet. 2004;364(9429):156-162.
25. Iannone R, Casella JF, Fuchs EJ, Chen AR, Jones RJ, Woolfrey A, Amylon M, Sullivan KM, Storb RF, Walters MC. Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transplant. 2003;9(8):519-528.
26. Walters MC, Hardy K, Edwards S, Adamkiewicz T, Barkovich J, Bernaudin F, Buchanan GR, Bunin N, Dickerhoff R, Giller R, Haut PR, Horan J, Hsu LL, Kamani N, Levine JE, Margolis D, Ohene-Frempong K, Patience M, Redding-Lallinger R, Roberts IA, Rogers ZR, Sanders JE, Scott JP, Sullivan KM, Multicenter Study of Bone Marrow Transplantation for Sickle Cell D. Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2010;16(2):263-272.
27. Sadelain M, Riviere I, Wang X, Boulad F, Prockop S, Giardina P, Maggio A, Galanello R, Locatelli F, Yannaki E. Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci. 2010;1202:52-58.
28. Mansilla-Soto J, Riviere I, Boulad F, Sadelain M. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum Gene Ther. 2016;27(4):295-304.
29. Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, Caccavelli L, Neven B, Bourget P, El Nemer W, Bartolucci P, Weber L, Puy H, Meritet JF, Grevent D, Beuzard Y, Chretien S, Lefebvre T, Ross RW, Negre O, Veres G, Sandler L, Soni S, de Montalembert M, Blanche S, Leboulch P, Cavazzana M. Gene Therapy in a Patient with Sickle Cell Disease. N Engl J Med. 2017;376(9):848-855.
30. Malik P, Grimley, M., Quinn, C. T., Shova, A., Little, C., L., Lutzko, C., Kalfa, T. A., Niss, O., Mehta, P. A., Chandra, S., Van der Loo, J. C., Grassman, E., Witting, S., Nordling, D., Shreshta, A., Felker, S., C., Reeves, L., Pillis, D., Loberg, A., Bushman, F. D., Knight-Madden, J., Davies, S. M., & Asnani, M. Gene Therapy for Sickle Cell Disease (SCD) Using RVT-1801 Lentivirus Vector and Arulite Reduced Intensity Conditioning Transplant Shows Promising Correction of the Disease Phenotype. American Society of Gene and Cell Therapy; 201; Washington DC.
31. Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes DB, Tate TA, Czechowicz A, Kfoury Y, Ruchika F, Rossi DJ, Verdine GL, Mansour MK, Scadden DT. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol. 2016;34(7):738-745.
32. Aiuti A, Naldini L. Safer conditioning for blood stem cell transplants. Nat Biotechnol. 2016;34(7):721-723.
33. Hartigan AJ, Pearse BR, McDonough SM, Proctor JL, Adams HL, McShea MA, Hoban MD, Panwar R, Hyzy SL, Goncalves KA, Palchaudhuri R, Boitano AE, Cooke MP. A Non-Genotoxic Antibody Drug Conjugate Targeting C-Kit for Hematopoietic Stem Cell Transplant Conditioning. Biology of Blood and Marrow Transplantation. 2018;24(3):S47-S48.
34. Radtke S, Adair JE, Giese MA, Chan YY, Norgaard ZK, Enstrom M, Haworth KG, Schefter LE, Kiem HP. A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Sci Transl Med. 2017;9(414).
35. Korbling M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood. 2011;117(24):6411-6416.
36. Falzetti F, Aversa F, Minelli O, Tabilio A. Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet. 1999;353(9152):555.
37. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA, Stewart FM, Heard SO. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant. 1997;3(1):45-49.
38. Balaguer H, Galmes A, Ventayol G, Bargay J, Besalduch J. Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion. 2004;44(8):1260-1261.
39. Lindemann A, Rumberger B. Vascular complications in patients treated with granulocyte colony-stimulating factor (G-CSF). Eur J Cancer. 1993;29A(16):2338-2339.
40. Pilo F, Angelucci E. Iron Toxicity and Hemopoietic Cell Transplantation: Time to Change the Paradigm. Mediterr J Hematol Infect Dis. 2019 May 1;11(1):e2019030. doi: 10.4084/MJHID.2019.030. eCollection 2019.
41. Fitzhugh CD, Hsieh MM, Bolan CD, Saenz C, Tisdale JF. Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium? Cytotherapy. 2009;11(4):464-471.
42. Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood. 2001;97(10):3313-3314.
43. De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov. 2003;2(7):581-587.
44. Yannaki E, Karponi G, Zervou F, Constantinou V, Bouinta A, Tachynopoulou V, Kotta K, Jonlin E, Papayannopoulou T, Anagnostopoulos A, Stamatoyannopoulos G. Hematopoietic stem cell mobilization for gene therapy: superior mobilization by the combination of granulocyte-colony stimulating factor plus plerixafor in patients with beta-thalassemia major. Hum Gene Ther. 2013;24(10):852-860.
45. Lidonnici MR, Aprile A, Frittoli MC, Mandelli G, Paleari Y, Spinelli A, Gentner B, Zambelli M, Parisi C, Bellio L, Cassinerio E, Zanaboni L, Cappellini MD, Ciceri F, Marktel S, Ferrari G. Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to plerixafor alone. Haematologica. 2017;102(4):e120-e124.
46. Lagresle-Peyrou C, Lefrere F, Magrin E, Ribeil JA, Romano O, Weber L, Magnani A, Sadek H, Plantier C, Gabrion A, Ternaux B, Felix T, Couzin C, Stanislas A, Treluyer JM, Lamhaut L, Joseph L, Delville M, Miccio A, Andre-Schmutz I, Cavazzana M. Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion. Haematologica. 2018;103(5):778-786.
47. Boulad F, Shore T, van Besien K, Minniti C, Barbu-Stevanovic M, Fedus SW, Perna F, Greenberg J, Guarneri D, Nandi V, Mauguen A, Yazdanbakhsh K, Sadelain M, Shi PA. Safety and efficacy of plerixafor dose escalation for the mobilization of CD34(+) hematopoietic progenitor cells in patients with sickle cell disease: interim results. Haematologica. 2018;103(5):770-777.
48. Tisdale JF, Kanter, J., 2, Mapara, M.Y., Kwiatkowski, J.L., Krishnamurti, L., Schmidt, M., Miller, A.L., Pierciey, F.J., Shi, W.,7, Ribeil, J., Asmal, M., Thompson, Walter, M.C. LentiGlobin Gene Therapy in Patients with Sickle Cell Disease: Updated Interim Results from HGB-206. American Society of Gene and Cell Therapy; 2019; Washington D.C.
49. Richard RE, Siritanaratkul N, Jonlin E, Skarpidi E, Heimfeld S, Blau CA. Collection of blood stem cells from patients with sickle cell anemia. Blood Cells Mol Dis. 2005;35(3):384-388.
50. Uchida N, Fujita A, Hsieh MM, Bonifacino AC, Krouse AE, Metzger ME, Donahue RE, Tisdale JF. Bone Marrow as a Hematopoietic Stem Cell Source for Gene Therapy in Sickle Cell Disease: Evidence from Rhesus and SCD Patients. Hum Gene Ther Clin Dev. 2017;28(3):136-144.
51. Pantin J, Purev E, Tian X, Cook L, Donohue-Jerussi T, Cho E, Reger R, Hsieh M, Khuu H, Calandra G, Geller NL, Childs RW. Effect of high-dose plerixafor on CD34(+) cell mobilization in healthy stem cell donors: results of a randomized crossover trial. Haematologica. 2017;102(3):600-609.
52. Ghiaccio V, Chappell M, Rivella S, Breda L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol Diagn Ther. 2019;23(2):173-186.
53. Hanna E, Remuzat C, Auquier P, Toumi M. Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy. 2017;5(1):1265293.
54. Barde I, Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc Neurosci. 2010;Chapter 4:Unit 4 21.
55. Segura MM, Garnier A, Durocher Y, Ansorge S, Kamen A. New protocol for lentiviral vector mass production. Methods Mol Biol. 2010;614:39-52.
56. Valkama AJ, Leinonen HM, Lipponen EM, Turkki V, Malinen J, Heikura T, Yla-Herttuala S, Lesch HP. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 2018;25(1):39-46.
57. Holic N, Seye AK, Majdoul S, Martin S, Merten OW, Galy A, Fenard D. Influence of mildly acidic pH conditions on the production of lentiviral and retroviral vectors. Hum Gene Ther Clin Dev. 2014;25(3):178-185.
58. Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. Mol Ther Methods Clin Dev. 2016;3:16017.
59. Ansorge S, Lanthier S, Transfiguracion J, Durocher Y, Henry O, Kamen A. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med. 2009;11(10):868-876.
60. Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30(2):E9.
61. McCarron A, Donnelley M, McIntyre C, Parsons D. Transient Lentiviral Vector Production Using a Packed-Bed Bioreactor System. Hum Gene Ther Methods. 2019;30(3):93-101.
62. Tinch S, Szczur K, Swaney W, Reeves L, Witting SR. A Scalable Lentiviral Vector Production and Purification Method Using Mustang Q Chromatography and Tangential Flow Filtration. Methods Mol Biol. 2019;1937:135-153.
63. Manceur AP, Kim H, Misic V, Andreev N, Dorion-Thibaudeau J, Lanthier S, Bernier A, Tremblay S, Gelinas AM, Broussau S, Gilbert R, Ansorge S. Scalable Lentiviral Vector Production Using Stable HEK293SF Producer Cell Lines. Hum Gene Ther Methods. 2017;28(6):330-339.
64. Liu Q. Generation of cGMP-Compliant Stable Packaging and Producer Cell Lines for Inducible Lentiviral Vector Production. American Society of Gene and Cell Therapy; 2019; Washington D.C.
65. Margherita Neri FB, Francesca Rossetti, Manuela Cota, Luca Crippa, Silvia Ungari, Emanuele Simonetti, Luca Allievi, Samuele Corbetta, Federico Lorenzetti, Francesca Bonfanti, Giuliana Vallanti. Lentiviral/Retroviral Vector Large Scale Manufacturing. American Society of Gene and Cell Therapy; 2019; Washington D.C.
66. Sutton RE, Reitsma MJ, Uchida N, Brown PO. Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol. 1999;73(5):3649-3660.
67. Davis HE, Morgan JR, Yarmush ML. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem. 2002;97(2-3):159-172.
68. Davis HE, Rosinski M, Morgan JR, Yarmush ML. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J. 2004;86(2):1234-1242.
69. Fenard D, Ingrao D, Seye A, Buisset J, Genries S, Martin S, Kichler A, Galy A. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells. Mol Ther Nucleic Acids. 2013;2:e90.
70. Lanuti M, Kouri CE, Force S, Chang M, Amin K, Xu K, Blair I, Kaiser L, Albelda S. Use of protamine to augment adenovirus-mediated cancer gene therapy. Gene Ther. 1999;6(9):1600-1610.
71. Lee HJ, Lee YS, Kim HS, Kim YK, Kim JH, Jeon SH, Lee HW, Kim S, Miyoshi H, Chung HM, Kim DK. Retronectin enhances lentivirus-mediated gene delivery into hematopoietic progenitor cells. Biologicals. 2009;37(4):203-209.
72. Delville M, Soheili T, Bellier F, Durand A, Denis A, Lagresle-Peyrou C, Cavazzana M, Andre-Schmutz I, Six E. A Nontoxic Transduction Enhancer Enables Highly Efficient Lentiviral Transduction of Primary Murine T Cells and Hematopoietic Stem Cells. Mol Ther Methods Clin Dev. 2018;10:341-347.
73. Hauber I, Beschorner N, Schrodel S, Chemnitz J, Kroger N, Hauber J, Thirion C. Improving Lentiviral Transduction of CD34(+) Hematopoietic Stem and Progenitor Cells. Hum Gene Ther Methods. 2018;29(2):104-113.
74. Schott JW, Leon-Rico D, Ferreira CB, Buckland KF, Santilli G, Armant MA, Schambach A, Cavazza A, Thrasher AJ. Enhancing Lentiviral and Alpharetroviral Transduction of Human Hematopoietic Stem Cells for Clinical Application. Mol Ther Methods Clin Dev. 2019;14:134-147.
75. Heffner GC, Bonner M, Christiansen L, Pierciey FJ, Campbell D, Smurnyy Y, Zhang W, Hamel A, Shaw S, Lewis G, Goss KA, Garijo O, Torbett BE, Horton H, Finer MH, Gregory PD, Veres G. Prostaglandin E2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells. Mol Ther. 2018;26(1):320-328.
76. Zonari E, Desantis G, Petrillo C, Boccalatte FE, Lidonnici MR, Kajaste-Rudnitski A, Aiuti A, Ferrari G, Naldini L, Gentner B. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Reports. 2017;8(4):977-990.
77. Petrillo C, Cesana D, Piras F, Bartolaccini S, Naldini L, Montini E, Kajaste-Rudnitski A. Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Mol Ther. 2015;23(2):352-362.
78. Wang CX, Sather BD, Wang X, Adair J, Khan I, Singh S, Lang S, Adams A, Curinga G, Kiem HP, Miao CH, Rawlings DJ, Torbett BE. Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood. 2014;124(6):913-923.
79. Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AMS, Piras F, Cuccovillo I, Petit SJ, Ahsan F, Noursadeghi M, Clare S, Genovese P, Gentner B, Naldini L, Towers GJ, Kajaste-Rudnitski A. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell. 2018;23(6):820-832 e829.
80. Uchida N, Nassehi T, Drysdale CM, Gamer J, Yapundich M, Demirci S, Haro-Mora JJ, Leonard A, Hsieh MM, Tisdale JF. High-Efficiency Lentiviral Transduction of Human CD34(+) Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Mol Ther Methods Clin Dev. 2019;13:187-196.
81. Keever-Taylor CA, Devine SM, Soiffer RJ, Mendizabal A, Carter S, Pasquini MC, Hari PN, Stein A, Lazarus HM, Linker C, Goldstein SC, Stadtmauer EA, O'Reilly RJ. Characteristics of CliniMACS(R) System CD34-enriched T cell-depleted grafts in a multicenter trial for acute myeloid leukemia-Blood and Marrow Transplant Clinical Trials Network (BMT CTN) protocol 0303. Biol Blood Marrow Transplant. 2012;18(5):690-697.
82. Spohn G, Wiercinska E, Karpova D, Bunos M, Hummer C, Wingenfeld E, Sorg N, Poppe C, Huppert V, Stuth J, Reck K, Essl M, Seifried E, Bonig H. Automated CD34+ cell isolation of peripheral blood stem cell apheresis product. Cytotherapy. 2015;17(10):1465-1471.
83. Aleksandrova K, Leise J, Priesner C, Melk A, Kubaink F, Abken H, Hombach A, Aktas M, Essl M, Burger I, Kaiser A, Rauser G, Jurk M, Goudeva L, Glienke W, Arseniev L, Esser R, Kohl U. Functionality and Cell Senescence of CD4/ CD8-Selected CD20 CAR T Cells Manufactured Using the Automated CliniMACS Prodigy(R) Platform. Transfus Med Hemother. 2019;46(1):47-54.