BACK TO THE “GOLD STANDARD”: HOW PRECISE IS HEMATOCRIT DETECTION TODAY? Novel ImageJ-based approach for the precise hematocrit measurement
Main Article Content
Keywords
RBC indices, microcapillary hematocrit, Image analysis
Abstract
Introduction: The commonly used method for hematocrit detection, by visual examination of microcapillary tube, known as "micro-HCT", is subjective but still remains one of the key sources for false hematocrit evaluation. Analytical automation techniques have increased standardization of RBC indexes detection; however, indirect hematocrit measurements by blood analyzer, the automated HCT, does not correlate well with "micro-HCT" results in patients with hematological pathologies. We aimed to overcome those disadvantages in "micro-HCT" analysis by using "ImageJ", processing software.
Methods: 223 blood samples from the "general population" and 19 from sickle cell disease patients were examined in parallel for hematocrit values using the automated HCT, standard "micro-HCT" and "ImageJ" micro-HCT methods.
Results: For the "general population" samples, the "ImageJ" values were significantly higher than the corresponding values evaluated by standard "micro-HCT" and automated HCT, except for the 0 to 2 months old newborns, in which the automated HCT results were similar to the "ImageJ" evaluated HCT. Similar to the "general population" cohort, we found significantly higher values measured by "ImageJ" compared to either "micro-HCT" or the automated HCT in SCD patients. Correspondent differences for the MCV and MCHC were also found.
Conclusions: This study introduces "micro-HCT" assessment technique using the image-analysis module of "ImageJ" software. This procedure allows overcoming most of the data errors associated with the standard "micro-HCT" evaluation and can replace the use of complicated and expensive automated equipment. The presented results may be also used to develop new standards for calculations of hematocrit and associated parameters for routine clinical practice.
Downloads
Abstract 682
PDF Downloads 480
HTML Downloads 152
References
2. Quinn JG, Tansey EA, Johnson CD, Roe SM, Montgomery LEA. Blood: tests used to assess the physiological and immunological properties of blood. Advances in Physiology Education. 2016;40(2):165-175. doi:10.1152/advan.00079.2015
3. Green R, Wachsmann-Hogiu S. Development, History, and Future of Automated Cell Counters. Clinics in Laboratory Medicine. 2015;35(1):1-10. doi:10.1016/j.cll.2014.11.003
4. Vis JY, Huisman A. Verification and quality control of routine hematology analyzers. International Journal of Laboratory Hematology. 2016;38(Suppl 1):100-109. doi:10.1111/ijlh.12503
5. BOURNER G, DHALIWAL J, SUMNER J. Performance Evaluation of the Latest Fully Automated Hematology Analyzers in a Large, Commercial Laboratory Setting:A 4-Way, Side-by-Side Study. Laboratory Hematology. 2005;11(4):285-297. doi:10.1532/LH96.05036
6. ADVIA. 2120/2120i Hematology systems operator’s guide. Published online 2010.
7. Lehner J, Greve B, Cassens U. Automation in Hematology. . Transfusion Medicine and Hemotherapy. 2007;34:328-339.
8. Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? International Journal of Laboratory Hematology. 2016;38:123-132. doi:10.1111/ijlh.12500
9. McMahon DJ, Carpenter RL. A Comparison of Conductivity-Based Hematocrit Determinations With Conventional Laboratory Methods in Autologous Blood Transfusions. Anesthesia & Analgesia. 1990;71(5):541-544. doi:10.1213/00000539-199011000-00015
10. Novis DA, Walsh M, Wilkinson D, St Louis M, Ben-Ezra J. Laboratory productivity and the rate of manual peripheral blood smear review: a College of American Pathologists Q-Probes study of 95,141 complete blood count determinations performed in 263 institutions. Archives of Pathology & Laboratory Medicine. 2006;130(5):596-601.
11. Kakkar N, Makkar M. Red Cell Cytograms Generated by an ADVIA 120 Automated Hematology Analyzer: Characteristic Patterns in Common Hematological Conditions. . Laboratory Medicine. 2009;40(9):549-555.
12. Huisjes R, Makhro A, Llaudet-Planas E, et al. Density, heterogeneity and deformability of red cells as markers of clinical severity in hereditary spherocytosis. Haematologica. 2020;105(2):338-347. doi:10.3324/haematol.2018.188151
13. Guthrie DL, Pearson TC. PCV measurement in the management of polycythaemic patients. Clinical & Laboratory Haematology. 1982;4(3):257-265. doi:10.1111/j.1365-2257.1982.tb00075.x
14. Beautyman W, Bills T. Osmotic error in measurements of Red-Cell volume. The Lancet. 1974;304(7885):905-906. doi:10.1016/S0140-6736(74)91246-X
15. Hudson I, Cooke A, Holland B, et al. Red cell volume and cardiac output in anaemic preterm infants. Archives of Disease in Childhood. 1990;65(7 Spec No):672-675. doi:10.1136/adc.65.7_Spec_No.672
16. Jones JG, Holland BM, Hudson IRB, Wardrop CAJ. Total circulating red cells versus haematocrit as the primary descriptor of oxygen transport by the blood. British Journal of Haematology. 1990;76(2):288-294. doi:10.1111/j.1365-2141.1990.tb07886.x
17. Blanchette VS, Zipursky A. Assessment of anemia in newborn infants. Clinical Perinatology. 1984;11(2):489-510.
18. Phillips HeatherM, Abdel-Moiz A, Gareth Jones J, et al. Determination of red-cell mass in assessment and management of anaemia in babies needing blood transfusion. The Lancet. 1986;327(8486):882-884. doi:10.1016/S0140-6736(86)90988-8
19. Mock DM, Bell EF, Lankford GL, Widness JA. Hematocrit Correlates Well with Circulating Red Blood Cell Volume in Very Low Birth Weight Infants. Pediatric Research. 2001;50(4):525-531. doi:10.1203/00006450-200110000-00017
20. Huber H, Lewis SM, Szur L. The Influence of Anaemia, Polycythaemia and Splenomegaly on the Relationship between Venous Haematocrit and Red-Cell Volume. British Journal of Haematology. 1964;10(4):567-575. doi:10.1111/j.1365-2141.1964.tb00733.x
21. Bentley SA, Lewis SM. The Relationship between Total Red Cell Volume, Plasma Volume and Venous Haematocrit. British Journal of Haematology. 1976;33(2):301-307. doi:10.1111/j.1365-2141.1976.tb03542.x
22. Bull BS, Fujimoto K, Houwen B, et al. International Council for Standardization in Haematology (ICSH) recommendations for “surrogate reference” method for the packed cell volume. Laboratory Haematology. 2003;9(1):1-9.
23. Mohandas N, Clark MR, Kissinger S, Bayer C, Shohet SB. Inaccuracies associated with the automated measurement of mean cell hemoglobin concentration in dehydrated cells. Blood. 1980;56(1):125-128.
24. Bull BS, Hay KL. Are red blood cell indexes international? Archives of Pathology & Laboratory Medicine. 1985;109(7):604-606.
25. Bull BS, Rittenbach JD. A proposed reference haematocrit derived from multiple MCHC determinations via haemoglobin measurements. Clinical & Laboratory Haematology. 1990;12(Supplement 1):43-53.
26. Furth FW. Effect of spherocytosis on volume of trapped plasma in red cell column of capillary and Wintrobe hematocrits. Journal of Laboratory and Clinical Medicine. 1956;48(3):421-430.
27. Rustad H. Correction for Trapped Plasma in Micro-Hematocrit Determinations. Scandinavian Journal of Clinical and Laboratory Investigation. 1964;16(6):677-679. doi:10.3109/00365516409055233
28. Savitz D, Sidel VW, Solomon AK. Osmotic Properties of Human Red Cells. Journal of General Physiology. 1964;48(1):79-94. doi:10.1085/jgp.48.1.79
29. Stäubli M, Roessler B, Straub PW. Fluid trapping of erythrocytes under hypoosmolar conditions. Blut. 1987;54(4):239-245. doi:10.1007/BF00594200
30. Pearson TC, Guthrie DL. Trapped Plasma in the Microhematocrit. American Journal of Clinical Pathology. 1982;78(5):770-772. doi:10.1093/ajcp/78.5.770
31. Karlow MA, Westengard JC, Bull BS. Does tube diameter influence the packed cell volume? Clinical & Laboratory Haematology. 1989;11(4):375-383. doi:10.1111/j.1365-2257.1989.tb00236.x
32. BRYNER MA, HOUWEN B, WESTENGARD J, KLEIN O. The spun micro-haematocrit and mean red cell volume are affected by changes in the oxygenation state of red blood cells. Clinical & Laboratory Haematology. 1997;19(2):99-103. doi:10.1046/j.1365-2257.1997.00223.x
33. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671-675. doi:10.1038/nmeth.2089
34. Alsous MM, Hawwa AF, McElnay JC. Hematocrit, blood volume, and surface area of dried blood spots – a quantitative model. Drug Testing and Analysis. 2020;12(4):555-560. doi:10.1002/dta.2776
35. del Ben F, Biasizzo J, Curcio F. A fast, nondestructive, low-cost method for the determination of hematocrit of dried blood spots using image analysis. Clinical Chemistry and Laboratory Medicine (CCLM). 2019;57(5):e81-e82. doi:10.1515/cclm-2018-0755
36. Brugnara C, Mohandas N. Red cell indices in classification and treatment of anemias. Current Opinion in Hematology. 2013;20(3):222-230. doi:10.1097/MOH.0b013e32835f5933
37. Hoffman R, Benz EJr, Shattil SJ, Furie B. Hematology: Basic Principles and Practice. . 4th ed. Churchill-Livingstone; 2004.
38. Pearson TC. Apparent polycythaemia. Blood Reviews. 1991;5(4):205-213. doi:10.1016/0268-960X(91)90010-A
39. Linderkamp O, Wu PYK, Meiselman HJ. Geometry of Neonatal and Adult Red Blood Cells. Pediatric Research. 1983;17(4):250-253. doi:10.1203/00006450-198304000-00003
40. Linderkamp O, Friederichs E, Meiselman HJ. Mechanical and Geometrical Properties of Density-Separated Neonatal and Adult Erythrocytes. Pediatric Research. 1993;34(5):688-693. doi:10.1203/00006450-199311000-00024
41. Segal GB, Palis J. Hematology of the newborn. . In: Lichtman M, ed. Williams Hematology. . 7th ed. Mcgraw Hill; 2006.
42. Ceriotti F. Pediatric References Intervals. . In: Soldin SJ, ed. Clinical Chemistry. AACC Press; 2005.
43. Goossen LH. Pediatric and geriatric hematology and hemostasis. In: Keohane E, ed. Rodak’s Hematology Clinical Principles and Applications. 5th ed. Elsever; 2015.
44. Esan AJ. Hematological differences in newborn and aging: a review study. . Hematology & Transfusion International Journal. 2016;3(3):178-190.
45. Meyer LM. BLOOD VOLUME DETERMINATIONS WITH RADIOACTIVE CHROMIUM (Cr 51 ) LABELED ERYTHROCYTES. Journal of the American Medical Association. 1956;160(15):1312-1315. doi:10.1001/jama.1956.02960500042011b
46. Dirksen JW, Quaife MA, Paxson CL, Barton TP. Evaluation and Testing of In Vitro Labeled Technetium Tc-99m Red Blood Cells in Two Animal Models for Neonatal RBC Volume Determinations. Pediatric Research. 1981;15(6):905-907. doi:10.1203/00006450-198106000-00004
47. Mock D, Lankford GL, Widness JA, Burmeister LF, Kahn D, Strauss RG. Measurement of circulating red cell volume using biotin-labeled red cells: validation against 51Cr-labeled red cells. Transfusion. 1999;39(2):149-155. doi:10.1046/j.1537-2995.1999.39299154728.x
48. Mock DM, Mock NI, Lankford GL, Burmeister LF, Strauss RG, Widness JA. Red Cell Volume Can Be Accurately Determined in Sheep Using a Nonradioactive Biotin Label. Pediatric Research. 2008;64(5):528-532. doi:10.1203/PDR.0b013e318183f119
49. Zeidan A, Golan L, Yelin D. In vitro hematocrit measurement using spectrally encoded flow cytometry. Biomedical Optics Express. 2016;7(10):4327-4334. doi:10.1364/BOE.7.004327
50. Jalal UM, Kim SC, Shim JS. Histogram analysis for smartphone-based rapid hematocrit determination. Biomedical Optics Express. 2017;8(7):3317-3328. doi:10.1364/BOE.8.003317
51. Rocha S, Costa E, Rocha-Pereira P, et al. Complementary markers for the clinical severity classification of hereditary spherocytosis in unsplenectomized patients. Blood Cells, Molecules, and Diseases. 2011;46(2):166-170. doi:10.1016/j.bcmd.2010.11.001