Epidemiological surveillance of SARSCov2 in β-Thalassemia Patients in the last two years: reinfection rate, insights and future challenges
Main Article Content
Keywords
SARSCov2, reinfection, immune responses, thalassemia, Monoclonal antibodies
Abstract
Background: Although the association between comorbidities and the severity of COVID-19 infection has been extensively discussed, data on COVID-19 and hemoglobinopathies are still limited. SARS-Cov2 reinfections with severe acute respiratory syndrome have been described in the general population, usually with a milder outcome compared to the primary infection.
The aim of our study was to determine the rate of reinfection and clinical features in a population of β-thalassemia patients.
Results: Following the first infection, patients showed an adequate humoral immune response, however, all four patients are considered immune impaired owing to chronic transfusional support coupled with iron chelating treatment and splenectomy in three of the four.
Downloads
Abstract 496
PDF Downloads 723
HTML Downloads 318
References
2 http://covid19.who.int/WHO-COVID-19-global-table-data.csv
3 Gallagher KME, Leick MB, Larson RC, Berger TR, Katsis K, Yam JY, Brini G, Grauwet K; MGH COVID-19 Collection & Processing Team, Maus MV. SARS-CoV-2 T-cell immunity to variants of concern following vaccination. 2021 May 3:2021.05.03.442455. doi: 10.1101/2021.05.03.442455. PMID: 33972942; PMCID: PMC8109204.
4 Bao, L, Deng W, Gao H. Reinfection could not occur in SARSCov2 infected rhesus macaques- Biorxiv 2020. 2020. 2003. 2013. 990226
5 Bongiovanni M, Vignati M, Giuliani G. The dilemma of COVID19 recurrence after clinical recovery.https://doi.org(10.1016/j.jinf.2020.08.019
6 Batisse D, Benech N, Botelho N. Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound? J Infect 2020S0163-4453 (20): 30454-0
7 Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2022 Jan 3;12:809244. doi: 10.3389/fimmu.2021.809244. PMID: 35046961; PMCID: PMC8761766.
8 De Sanctis V, Canatan D, Lluis ,J et al. A comprehensive update of ICET-A Network on COVID19 in Thalassemia: What we know and where we stand. Acta Biomed. 2020; 91:e202000-26.
9 Kapoor R, Nair R, Nayan N, Bhalla S ,Singh J. Reinfection or reactivation of Coronavirus-19 in patients with hematologic malignancies: case report series. SN Comprehensive Clinical Medicine (2021) 3: 670-674.
10 Torti L, Maffei L, Sorrentino F. , De Fabritiis P, Miceli R. , Abruzzese E . Impact of SARS Cov2 in Hemoglobinopathies with immune disfunction and Epidemiology. A protective mechanism from Β chain defects? . MJID 2020 jul, 1;12: e2020052
11 Barone P, DeSimone RA. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design. Transfusion. 2020 Jun;60(6):1123-1127. doi: 10.1111/trf.15843. Epub 2020 May 12. PMID: 32374891; PMCID: PMC7267607.
12 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/investigational-covid-19-convalescent-plasma
13 Okar L, Ahmad R, Yassin M. First report of COVID19 reinfection in a patient with β thalassemia major. Clin Case Rep.2021, 9, 861-865.
14 Farnakis D, Giakoumis A, Cannon L, Angastiniotis M, Eleftheriou A. COVID19 and thalassemia: a position statement of the Thalassemia International Federation. Eur J Haematol.2020; 1-9.
15 Karimi M, De Sanctis V. Implications of SARSCov2 infection in thalassemias: do patients fall into the “high clinical risk” category? Acta Biomed.2020; 91-50-56.
16 Zhao J, Yuan Q,Wang H. Antibody responses to SARSCov2 in patients with novel coronavirus disease 2019. Clin Infect Dis.2020; 71 (16).2027-2034.
17 Anastasi E, Marziali M, Preziosi A, Berardelli E, LoSardo A, Ribersani M, Pugliese P, Farina A, Mancini P, Angeloni A. Humoral immune response to Comirnaty SARS-Cov2 mRNA vaccine in Thalassemia Major patients. Microbes and infection 2022. MICINF 2022. https://doi.org/10.1016/j.micinf.2022.104976
18 Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X, Solomon IH, Kuo HH, Boucau J, Bowman K, Adhikari UD, Winkler ML, Mueller AA, Hsu TY, Desjardins M, Baden LR, Chan BT, Walker BD, Lichterfeld M, Brigl M, Kwon DS, Kanjilal S, Richardson ET, Jonsson AH, Alter G, Barczak AK, Hanage WP, Yu XG, Gaiha GD, Seaman MS, Cernadas M, Li JZ. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med. 2020 Dec 3;383(23):2291-2293. doi: 10.1056/NEJMc2031364. Epub 2020 Nov 11. PMID: 33176080; PMCID: PMC7673303.
19 Nakajima Y, Ogai A, Furukawa K, Arai R, Anan R, Nakano Y, Kurihara Y, Shimizu H, Misaki T, Okabe N. Prolonged viral shedding of SARS-CoV-2 in an immunocompromised patient. J Infect Chemother. 2021 Feb;27(2):387-389. doi: 10.1016/j.jiac.2020.12.001. Epub 2020 Dec 4. PMID: 33328135; PMCID: PMC7836222.
20 Sette A, Crotty S. Adaptive immunity to SARCov2 and Covid19. Cell 184 2021. 861-874
21 Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26, 842-844.
22 Jordan SC. Innate and adaptive immune responses to SARS-CoV-2 in humans: relevance to acquired immunity and vaccine responses. Clin Exp Immunol. 2021 Jun;204(3):310-320. doi: 10.1111/cei.13582. PMCID: PMC8013613.
23 Moran E, Cook T, Goodman AL, Gupta RK, Jolles S, Menon DK, Roberts DJ, Savic S, Shankar-Hari M, Brown M, Lowe DM. Persistent SARS-CoV-2 infection: the urgent need for access to treatment and trials. Lancet Infect Dis. 2021 Oct;21(10):1345-1347. doi: 10.1016/S1473-3099(21)00464-3. PMID: 34411531; PMCID: PMC8367192.
24 Primorac D, Vrdoljak K, Brlek P, Pavelić E, Molnar V, Matišić V, Erceg Ivkošić I, Parčina M. Adaptive Immune Responses and Immunity to SARS-CoV-2. Front Immunol. 2022 May 4;13:848582. doi: 10.3389/fimmu.2022.848582. PMID: 35603211; PMCID: PMC9114812.
25 Chatterjee S, Choudhury S, Das D. An update of antispike severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies. Indian J Pharmacol. 2022;54(1):51-57. doi:10.4103/ijp.ijp_519_21.
26 Ju, B, Zhang, Q, Ge J, Wang R, Sun J. Human neutralizing antibodies elicited by SARS-Cov2 infection. Nature, 2020, 484: 115-9.
27 Roy, S. COVID19 reinfection: myth or truth? SN Comp Clin Med. 2020; 2: 710-3.
28 FDA. Casirivimab and imdevimab. EUA Letter of Authorization. 2020.
29 Committee for Medicinal Products for Human Use (CHMP) - EMA. EMA issues advice on use of REGN-COV2 antibody combination (casirivimab / imdevimab). Published online 2021.
30 Committee for Medicinal Products for Human Use (CHMP) - EMA. Assessment Report: Eli Lilly and Company Limited Use of Bamlanivimab and Etesevimab for the Treatment of COVID-19.; 2021.
31 Uso degli anticorpi monoclonali per COVID-19 | Agenzia Italiana del Farmaco. Accessed June 14, 2021. https://www.aifa.gov.it/uso-degli-anticorpi-monoclonali
32 Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2021;384(3):238–51. https://doi.org/10.1056/nejmoa2035002.
33 Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2021;384(3):229–37. https://doi.org/10.1056/nejmoa2029849
34 Eligibility criteria for pediatric patients who may benefit from anti SARS-CoV-2 monoclonal antibody therapy administration: an Italian inter-society consensus statement
Lanari M, Venturini E, Pierantoni L, Stera G, Castelli Gattinara G, Esposito S, Favilli S, Franzoni E, Fusco E, Lionetti P, Maffeis C, Marseglia G, Massella L, Midulla F, Zanobini A, Zecca A, Villani A, Staiano A, Galli L. Italian Journal of Pediatrics volume 48, Article number: 7 (2022).
35 Arlet JB, de Luna G, Khimoud D, Odièvre MH, de Montalembert M, Joseph L, et al. Prognosis of patients with sickle cell disease and COVID-19: a French experience. Lancet Haematol. 2020;7(9):e632–4. https://doi.org/10.1016/S2352-3026(20)30204-0.
36 Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. Accessed August 9, 2021. https://www.nature.com/articles/s41586-021-03398-2
37 Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. Accessed August 9, 2021. https://science.sciencemag.org/content/371/6531/850
38 Motta, I; De amicis, M; Pinto, V; Balocco, M; Longo F,: Bonetti, F; Gianesin, B; Graziadei, G; Cappellini , M; De Franceschi, L; Piga, A; Forni, G. SARSCov2 infection in β-thalassemia: preliminary data from the Italian experience. Am J Hematol 2020; 95: E 198-E 199.
39 Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy Eur J Allergy Clin Immunol. 2021;76(2):428–55. https://doi.org/10.1111/all.14657.