SICKLE CELL TRAIT, CLINICAL MANIFESTATIONS AND OUTCOMES: A CROSS-SECTIONAL STUDY

Main Article Content

Diego A Vargas-Hernández https://orcid.org/0000-0002-2584-5195
Adriana Catalina Uscategui-Ruiz https://orcid.org/0000-0001-6556-9415
Andrés Jesus Prada-Rueda
Consuelo Romero-Sánchez

Keywords

Sickle Cell Trait, Splenic Infarction, Splenic Diseases, Spleen, Hemoglobinopathies

Abstract

Introduction: Sickle cell trait (SCT) is an autosomal recessive blood disorder in which patients are heterozygous carriers for hemoglobin S (HbAS) and are usually asymptomatic. We performed a descriptive analysis of clinical manifestations and outcomes associated with SCT.


Methods: This was a descriptive, cross-sectional study that included patients with SCT from 2014 to 2020 at Hospital Militar Central, the reference center of the Military forces in Bogota, Colombia.


Results: Of 647 hemoglobin electrophoresis analyzed, we identified 51 patients with SCT, including 43 males (84.3%) and eight females (15.7%), with a median age of 22 years (IQR 15–36 years). Of these, 28 (54.8%) were Afro-Colombian, and 23 (45.1%) were Colombian mestizos. Twenty-four patients (47.1%) were asymptomatic, and Twenty-seven patients (52.9%) were symptomatic (systemic complications); splenic complications were the most important (85.2%), p=0.0005, and there was a wide spectrum of splenic complications. We found significant elevations in leukocytes, bilirubin, LDH, and CRP. Eighteen patients (66.7%) received medical management, five patients (18.5%) required splenectomy, and only 5.9% of patients were sent for genetic counseling.


Conclusions: Splenic complications were the most relevant in symptomatic patients. Most patients received medical treatment, and 18.5% of patients required splenectomy. Our results reflect the absence of redirection of these patients to genetic counseling.


 

Downloads

Download data is not yet available.


Abstract 764
PDF Downloads 745
HTML Downloads 265

References

[1] Naik RP, Smith-Whitley K, Hassell KL, Umeh NI, de Montalembert M, Sahota P, et al. Clinical outcomes associated with sickle cell trait: A systematic review. Annals of Internal Medicine 2018;169:619–27. https://doi.org/10.7326/M18-1161.
[2] Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013 Jan 12;381(9861):142-51. doi: 10.1016/S0140-6736(12)61229-X.
[3] Ojodu J, Hulihan MM, Pope SN, Grant AM, Centers for Disease Control and Prevention (CDC). Incidence of Sickle Cell Trait — United States, 2010. Morbidity and Mortality Weekly Report 2014;63:1155.
[4] Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Medicine 2013;10. https://doi.org/10.1371/JOURNAL.PMED.1001484.
[5] Asfaw SH, Falk GA, Morris-Stiff G, Tuthill RJ, Moorman ML, Samotowka MA. A Unique Cause of Intestinal and Splenic Infarction in a Sickle Cell Trait Patient. Case Reports in Surgery 2013;2013:1–3. https://doi.org/10.1155/2013/580453.
[6] Gonzalez L, Shapiro AF, Tafur A, Plaza-Meneses C, Sabando B. Splenic Infarct Secondary to High Altitude Exposure in Sickle Cell Trait Patients: A Case Series. Cureus 2020;12:e9815. https://doi.org/10.7759/cureus.9815.
[7] Cook AL. Splenic infarction in a high-altitude traveler with undiagnosed sickle cell trait. Wilderness and Environmental Medicine 2008;19:318–20. https://doi.org/10.1580/08-WEME-LE-189.1.
[8] Goodman J, Hassell K, Irwin D, Witkowski EH, Nuss R. The Splenic Syndrome in Individuals with Sickle Cell Trait. High Altitude Medicine & Biology 2014;15:468–71. https://doi.org/10.1089/ham.2014.1034.
[9] Jefferson JM, Sims WM, Umeh N, Byeon YJJ, Abdallah KE, Bonham VL, et al. Splenic infarction in sickle cell trait: A comprehensive systematic review of case studies. EJHaem 2021;2:585–600. https://doi.org/10.1002/jha2.248.
[10] Lane PA. Splenic Syndrome at Mountain Altitudes in Sickle Cell Trait. JAMA 2011;253:2251. https://doi.org/10.1001/jama.1985.03350390093033.
[11] Murano T, Fox AD, Anjaria D. Acute splenic syndrome in an African-American male with sickle cell trait on a commercial airplane flight. Journal of Emergency Medicine 2013;45. https://doi.org/10.1016/j.jemermed.2013.05.009.
[12] Longo T, Shaines M. Case report: Exertional rhabdomyolysis in a spin class participant with sickle cell trait. F1000Research 2019;7. https://doi.org/10.12688/f1000research.16326.2.
[13] Presley TD, Perlegas AS, Bain LE, Ballas SK, Nichols JS, Sabio H, et al. Effects of a single sickling event on the mechanical fragility of sickle cell trait erythrocytes. Hemoglobin 2010;34:24–36. https://doi.org/10.3109/03630260903546999.
[14] Blinder MA, Russel S. Exertional sickling: questions and controversy. Hematology Reports 2014;6:5502. https://doi.org/10.4081/hr.2014.5502.
[15] Seegars MB, Brett AS. Splenic infarction associated with sickle cell trait at low altitude. Hematology 2015;20:607–9. https://doi.org/10.1179/1607845415y.0000000024.
[16] Yanamandra U, Das R, Malhotra P, Varma S. A Case of Autosplenectomy in Sickle Cell Trait Following an Exposure to High Altitude. Wilderness and Environmental Medicine 2018;29:85–9. https://doi.org/10.1016/j.wem.2017.08.021.
[17] Bucknor MD, Goo JS, Coppolino ML. The risk of potential thromboembolic, renal and cardiac complications of sickle cell trait. Hemoglobin 2014;38:28–32. https://doi.org/10.3109/03630269.2013.832689.
[18] Tsaras G, Owusu-Ansah A, Boateng FO, Amoateng-Adjepong Y. Complications Associated with Sickle Cell Trait: A Brief Narrative Review. American Journal of Medicine 2009;122:507–12. https://doi.org/10.1016/j.amjmed.2008.12.020.
[19] Nelson DA, Deuster PA, Carter R, Hill OT, Wolcott VL, Kurina LM. Sickle Cell Trait, Rhabdomyolysis, and Mortality among U.S. Army Soldiers. New England Journal of Medicine 2016;375:435–42. https://doi.org/10.1056/nejmoa1516257.
[20] Webber BJ, Nye NS, Harmon KG, O’Connor FG. Exertional Rhabdomyolysis, Sickle Cell Trait, and “Military Misdirection.” Current Sports Medicine Reports 2021;20:562–3. https://doi.org/10.1249/JSR.0000000000000897.
[21] Buchanan BK, Siebert DM, Zigman Suchsland ML, Drezner JA, Asif IM, O’Connor FG, et al. Sudden Death Associated With Sickle Cell Trait Before and After Mandatory Screening. Sports Health 2020;12:241–5. https://doi.org/10.1177/1941738120915690.
[22] Fernando C, Mendis S, Upasena A, Costa Y, Williams H, Moratuwagama D. Splenic Syndrome in a Young Man at High Altitude with Undetected Sickle Cell Trait. Journal of Patient Experience 2018;5:153–5. https://doi.org/10.1177/2374373517747905.
[23] Yeral M, Boğa C. Is sickle cell trait really innocent? Turkish Journal of Hematology 2021;38:159–60. https://doi.org/10.4274/tjh.galenos.2020.2020.0344.
[24] Busse B, Tepedino M-F, Rupprecht W, Klein H-G. Stepwise diagnostics of hemoglobinopathies. LaboratoriumsMedizin 2016;39. https://doi.org/10.1515/LABMED-2016-0009.
[25] Amer Wahed, Andres Quesada, Amitava Dasgupta, Chapter 4 - Hemoglobinopathies and thalassemias, Editor(s): Amer Wahed, Andres Quesada, Amitava Dasgupta, Hematology and Coagulation (Second Edition), Academic Press, 2020, Pages 51-75, ISBN 9780128149645,
https://doi.org/10.1016/B978-0-12-814964-5.00004-8.
[26] Giordano PC. Strategies for basic laboratory diagnostics of the hemoglobinopathies in multi-ethnic societies: interpretation of results and pitfalls. International Journal of Laboratory Hematology 2013;35:465–79. https://doi.org/10.1111/IJLH.12037.
[27] Serjeant GR. The natural history of sickle cell disease. Cold Spring Harbor Perspectives in Medicine 2013;3. https://doi.org/10.1101/CSHPERSPECT.A011783.
[28] Ossa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PLoS ONE 2016;11:e0164414. https://doi.org/10.1371/JOURNAL.PONE.0164414.
[29] Homburger JR, Moreno-Estrada A, Gignoux CR, Nelson D, Sanchez E, Ortiz-Tello P, et al. Genomic Insights into the Ancestry and Demographic History of South America. PLOS Genetics 2015;11:e1005602. https://doi.org/10.1371/JOURNAL.PGEN.1005602.
[30] Xu JZ, Thein SL. The carrier state for sickle cell disease is not completely harmless. Haematologica 2019;104:1106–11. https://doi.org/10.3324/haematol.2018.206060.
[31] el Hoss S, Cochet S, Marin M, Lapouméroulie C, Dussiot M, Bouazza N, et al. Insights into determinants of spleen injury in sickle cell anemia. Blood Advances 2019;3:2328–36. https://doi.org/10.1182/bloodadvances.2019000106.
[32] Brousse V, Buffet P, Rees D. The spleen and sickle cell disease: The sick(led) spleen. British Journal of Haematology 2014;166:165–76. https://doi.org/10.1111/bjh.12950.
[33] Rumaney MB, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Kengne AP, Ngogang J, et al. The Co-Inheritance of Alpha-Thalassemia and Sickle Cell Anemia Is Associated with Better Hematological Indices and Lower Consultations Rate in Cameroonian Patients and Could Improve Their Survival. PLoS ONE 2014;9. https://doi.org/10.1371/JOURNAL.PONE.0100516.
[34] Ladu AI, Aiyenigba AO, Adekile A, Bates I. The spectrum of splenic complications in patients with sickle cell disease in Africa: a systematic review. British Journal of Haematology 2021;193:26–42. https://doi.org/10.1111/BJH.17179.
[35] Luu S, Spelman D, Woolley IJ. Post-splenectomy sepsis: preventative strategies, challenges, and solutions. Infection and Drug Resistance 2019;12:2839. https://doi.org/10.2147/IDR.S179902.
[36] Acharya K, Lang CW, Ross LF. A pilot study to explore knowledge, attitudes, and beliefs about sickle cell trait and disease. Journal of the National Medical Association 2009;101:1163–72. https://doi.org/10.1016/S0027-9684(15)31113-5.
[37] Pecker LH, Naik RP. The current state of sickle cell trait: Implications for reproductive and genetic counseling. Blood 2018;132:2331–8. https://doi.org/10.1182/blood-2018-06-848705.