Main Article Content

Dr. Palmieri
Ilaria Del Principe
Dr. Maurillo
Prof. Venditti
Francesco Buccisano


t-aml, T-mn, Clinical evaluation


Therapy-related myeloid neoplasms (t-MNs) encompass a specific sub-group of myeloid malignancies arising after exposure to radio/cytotoxic agents for the treatment of unrelated diseases.

Such malignancies present unique features, including advanced age, high comorbidities burden, and unfavorable genetic profiles. All these features justify the need for a specific diagnostic work-up and dedicated treatment algorithms. However, as new classification systems recognize the unique clinical characteristics exhibited by t-MNs patients, how to assess fitness status in this clinical setting is largely unexplored. Optimizing fitness assessment would be crucial in the management of t-MNs patients, considering that factors usually contributing to a worse or better outcome (like age, comorbidities, and treatment history) are patient-specific.

In the absence of specific tools for fitness assessment in this peculiar category of AML, the aim of this review is to describe all those factors related to patient, treatment and disease that allow planning treatments with an optimal risk/benefit ratio.


Download data is not yet available.

Abstract 1025
PDF Downloads 491
HTML Downloads 82


1. Fianchi L, Criscuolo M, Fabiani E, et al. Therapy-related myeloid neoplasms: Clinical perspectives. Onco Targets Ther. 2018;11:5909-5915. doi:10.2147/OTT.S101333
2. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405. doi:10.1182/blood-2016-03-643544
3. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-1719. doi:10.1038/s41375-022-01613-1
4. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228. doi:10.1182/blood.2022015850
5. Voso MT, Falconi G, Fabiani E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood. 2021;138(9):749-757. doi:10.1182/blood.2021010764
6. Litzow MR, Tarima S, Pérez WS, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115(9):1850-1857. doi:10.1182/blood-2009-10-249128
7. Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345-1377. doi:10.1182/blood.2022016867
8. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-2302. doi:10.1182/blood-2002-04-1199
9. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 2009;114(5):937-951. doi:10.1182/blood-2009-03-209262
10. Tiruneh T, Enawgaw B, Shiferaw E. Genetic Pathway in the Pathogenesis of Therapy-Related Myeloid Neoplasms: A Literature Review. Oncol Ther. 2020;8(1):45-57. doi:10.1007/s40487-020-00111-7
11. Joannides M, Grimwade D. Molecular biology of therapy-related leukaemias. Clinical and Translational Oncology. 2010;12(1):8-14. doi:10.1007/s12094-010-0460-5
12. Qian Z, Joslin JM, Tennant TR, et al. Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia. Chem Biol Interact. 2010;184(1-2):50-57. doi:10.1016/j.cbi.2009.11.025
13. Economides MP, McCue D, Borthakur G, Pemmaraju N. Topoisomerase II inhibitors in AML: past, present, and future. Expert Opin Pharmacother. 2019;20(13):1637-1644. doi:10.1080/14656566.2019.1621292
14. Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Cancers (Basel). 2021;13(24):1-34. doi:10.3390/cancers13246385
15. Morice PM, Leary A, Dolladille C, et al. Myelodysplastic syndrome and acute myeloid leukaemia in patients treated with PARP inhibitors: a safety meta-analysis of randomised controlled trials and a retrospective study of the WHO pharmacovigilance database. Lancet Haematol. 2021;8(2):e122-e134. doi:10.1016/S2352-3026(20)30360-4
16. Leone G, Fabiani E, Voso MT. De Novo and Therapy-Related Myelodysplastic Syndromes: Analogies and Differences. Mediterr J Hematol Infect Dis. 2022; 14(1): e2022030. Published online 2022 May 1. doi: 10.4084/MJHID.2022.030
17. Othman J, Meggendorfer M, Tiacci E, et al. Overlapping features of therapy-related and de novo NPM1 -mutated AML. Blood. 2023;141(15):1846-1857. doi:10.1182/blood.2022018108
18. P Larson RA, Le Beau MM. Prognosis and Therapy When Acute Promyelocytic Leukemia and Other “Good Risk” Acute Myeloid Leukemias Occur as a Therapy-Related Myeloid Neoplasm. Mediterr J Hematol Infect Dis. 2011; 3(1): e2011032. Published online 2011 Jul 8. doi: 10.4084/MJHID.2011.032
19. Pulsoni A, Pagano L, Lo Coco F, et al. Clinicobiological features and outcome of acute promyelocytic leukemia occurring as a second tumor: the GIMEMA experience. Blood. 2002 Sep 15;100(6):1972-6. doi: 10.1182/blood-2001-12-0312.
20. Palmieri R, Paterno G, De Bellis E, et al. Therapeutic choice in older patients with acute myeloid leukemia: A matter of fitness. Cancers (Basel). 2020;12(1):1-19. doi:10.3390/cancers12010120
21. Kayser S, Döhner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137-2145. doi:10.1182/blood-2010-08-301713
22. Strickland SA, Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022;171:103607. doi:10.1016/j.critrevonc.2022.103607
23. Zeien J, Qiu W, Triay M, et al. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care. Biomedicine and Pharmacotherapy. 2022;146(September 2021):112503. doi:10.1016/j.biopha.2021.112503
24. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. doi:10.3322/caac.21565
25. Neuendorff NR, Loh KP, Mims AS, et al. Anthracycline-related cardiotoxicity in older patients with acute myeloid leukemia: A Young SIOG review paper. Blood Adv. 2020;4(4):762-775. doi:10.1182/bloodadvances.2019000955
26. Ganz WI, Sridhar KS, Ganz SS, Gonzalez R, Chakko S, Serafini A. Review of Tests for Monitoring Doxorubicin-lnduced Cardiomyopathy. Oncology (Switzerland). 1996;53(6):461-470. doi:10.1159/000227621
27. Liu T, De Los Santos FG, Phan SH. The Bleomycin Model of Pulmonary Fibrosis. In: ; 2017:27-42. doi:10.1007/978-1-4939-7113-8_2
28. Palmieri R, Othus M, Cheng SG, et al. Pulmonary function testing for fitness assessment in asymptomatic adults with newly diagnosed acute myeloid leukemia. Haematologica. 2022 Nov 1;107(11):2752-2755. doi: 10.3324/haematol.2022.281445
29. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490-2518. doi:10.3390/toxins2112490
30. Fjeldborg P, Helkjer PE, Introduction HE, Cisplatin OF. The Long-Term Effect. 1986;2:2214-2217.
31. Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol. 2017;9(26):1092-1100. doi:10.4254/wjh.v9.i26.1092
32. Wilder J, Patel K. The clinical utility of FibroScan® as a noninvasive diagnostic test for liver disease. Medical Devices: Evidence and Research. 2014;7(1):107-114. doi:10.2147/MDER.S46943
33. Li G zhou, Hu Y hui, Li D yi, et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology. 2020;81(August):161-171. doi:10.1016/j.neuro.2020.10.004
34. Steensma DP. Predicting therapy-related myeloid neoplasms—and preventing them? Lancet Oncol. 2017;18(1):11-13. doi:10.1016/S1470-2045(16)30622-2
35. Chen Y, Estrov Z, Pierce S, et al. Myeloid neoplasms after breast cancer: "therapy-related" not an independent poor prognostic factor. Leuk Lymphoma. 2015 Apr;56(4):1012-9. doi: 10.3109/10428194.2014.946023
36. Bertoli S, Sterin A, Tavitian S, et al. Therapy-related acute myeloid leukemia following treatment of lymphoid malignancies. Oncotarget. 2016 Dec 27;7(52):85937-85947. doi: 10.18632/oncotarget.13262.
37. Sorror ML, Maris MB, Storb R, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912-2919. doi:10.1182/blood-2005-05-2004
38. Elborai Y, Hafez H, Moussa EA, et al. Comparison of toxicity following different conditioning regimens (busulfan/melphalan and carboplatin/etoposide/melphalan) for advanced stage neuroblastoma: Experience of two transplant centers. Pediatr Transplant. 2016;20(2):284-289. doi:10.1111/petr.12638
39. Socié G, Rizzo JD. Second solid tumors: Screening and management guidelines in long-term survivors after allogeneic stem cell transplantation. Semin Hematol. 2012;49(1):4-9. doi:10.1053/j.seminhematol.2011.10.013
40. Doney K, Leisenring W, Linden H. Allogeneic hematopoietic cell transplantation in patients with a hematologic malignancy and a prior history of breast cancer. Breast Cancer Res Treat. 2022;194(3):507-516. doi:10.1007/s10549-022-06658-5
41. Palmieri R, Montgomery RB, Doney K. Allogeneic stem cell transplantation in patients with a prior history of prostate cancer. Ann Hematol. 2023;102(2):407-412. doi:10.1007/s00277-022-05041-0
42. Steensma DP. Predicting therapy-related myeloid neoplasms—and preventing them? Lancet Oncol. 2017;18(1):11-13. doi:10.1016/S1470-2045(16)30622-2

Similar Articles

You may also start an advanced similarity search for this article.