CAN WE PREDICT INCIPIENT DIABETES MELLITUS IN PATIENTS WITH TRANSFUSION DEPENDENT β-THALASSEMIA (β-TDT) REFERRED WITH A HISTORY OF PREDIABETES? Risk factors for incipient diabetes in thalassemia

Main Article Content

Vincenzo De Sanctis
Ashraf Soliman
Shahina Daar
Ploutarchos Tzoulis
Christos Kattamis

Keywords

Transfusion dependent β-thalassemia, OGTT, pancreatic β-cell function, insulin sensitivity/resistance, risk factors, incipient diabetes.

Abstract

Background: Prediabetes and diabetes mellitus (DM) are complications in adult patients with transfusion dependent β-thalassemia (β-TDT), with their incidence increasing with age. Objective: This retrospective observational study describes the glycemic trajectories and evaluates predictive indices of β-cell function and insulin sensitivity/resistance in β-TDT patients with prediabetes, both in a steady state and during 3-h oral glucose tolerance test (OGTT), in order to identify patients at high risk for incipient diabetes. Setting: The study was mainly conducted at the Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara (Italy) in collaboration with thalassemia referring centers across Italy. Patients: The study included 11 β-TDT (aged 15.11- 31.10 years) with history of prediabetes. Methods: The ADA criteria for the diagnosis of glucose dysregulation were adopted. Investigations included evaluation of plasma glucose levels and insulin secretion, analysis of glycemic trajectories and indices of β-cell function and insulin sensitivity/resistance assessed in steady state and during OGTT. Results: The duration of progression from prediabetes to DM, expressed in years, showed a positive direct correlation with corrected insulin response (CIR-30 = r: 0.7606, P: 0.0065), insulinogenic index (IGI 0-120 = r: 0.6121, P:0.045), oral disposition index (oDI = r: 0.7119, P:0.013), insulin growth factor-1 (IGF-1= r: 0.6246, P: 0.039) and an inverse linear correlation with serum ferritin (SF = r: -0.7197, P: 0.012). Conclusions: Progressive β-cell failure, peripheral resistance to the action of insulin and reduction of oDI were the principal factors responsible for the progression from prediabetes to incipient DM.

Downloads

Download data is not yet available.


Abstract 467
PDF Downloads 352
HTML Downloads 33

References

References
1. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Yassin MA, Kattamis C. Evolution of combined impaired fasting glucose and impaired glucose tolerance in β-thalassemia major: Results in 58 patients with a mean 7.7- year follow-up. Acta Biomed. 2022; 93(3): e2022242. doi:10.23750/abm.v93i3.12825.
2. Barbu E, Popescu MR, Popescu AC, Balanescu SM. Phenotyping the Prediabetic Population—A Closer Look at Intermediate Glucose Status and Cardiovascular Disease. Int J Mol Sci. 2021; 22(13):6864. doi:10.3390/ijms22136864.
3. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2020. Diabetes Care. 2020; 43(Suppl.1): S14-S31.https://doi.org/10.2337/dc20-S002.
4. Guo F, Moellering DR, Garvey WT.Use of HbA1c for Diagnoses of Diabetes and Prediabetes: Comparison with Diagnoses Based on Fasting and 2-Hr Glucose Values and Effects of Gender, Race, and Age. Metab Syndr Relat Disord. 2014;12(5): 258–268. doi: 10.1089/met.2013.0128.
5. Nichols GA, Hillier TA, Brown JB. Progression from newly acquired impaired fasting glucose to type 2 diabetes. Diabetes Care. 2007; 30: 228–233. doi: 10.2337/dc06-1392.
6. Kim YA, Ku EJ, Khang AR, Hong ES, Kim KM, Moon JH, Choi SH, Park KS, Jang HC, Lim S. Role of various indices derived from an oral glucose tolerance test in the prediction of conversion from prediabetes to type 2 diabetes. Diabetes Res Clin Pract .2014;106(2):351-359.doi.org/10.1016/j.diabres.2014.08.014.
7. De Sanctisv, Soliman A, Tzoulis P, Daar S, Karimi M, Yassin MA, Pozzobon G, Kattamis C. Clinical characteristics, biochemical parameters and insulinresponse to oral glucose tolerance test (OGTT) in 25 transfusion dependent β-thalassemia (TDT) patients recently diagnosed with diabetes mellitus (DM).Acta Biomed 2021;92 (6): e2021488.doi: 10.23750/ abm.v92i6.12366.
8. De Sanctis V, Soliman AT, Tzoulis P, Daar S, Di Maio S, Fiscina B, Kattamis C. Glucose Metabolism and Insulin Response to Oral Glucose Tolerance Test (OGTT) in Prepubertal Patients with Transfusion-Dependent β-thalassemia (TDT): A Long-Term Retrospective Analysis. Mediterr J Hematol Infect Dis 2021;13(1):e2021051. doi: 10.4084/MJHID.2021.051.
9. Kattamis C, Ladis V, Tsoussis D, Kaloumenou I, Theodoridis C. Evolution of glucose intolerance and diabetes in transfused patients with thalassemia. Pediatr Endocrinol Rev 2004;2 (Suppl 2):267-271. PIMD:16462709.
10. De Sanctis V, Soliman AT. ICET-A an Opportunity for Improving Thalassemia Management. J Blood Disord. 2014;1(1): 2.
11. Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocr Metab. 2015;19:160-4. doi: 10.4103/2230-8210.146874.
12. De Sanctis V, Soliman AT, Elsedfy H, Skordis N, Kattamis C, Angastiniotis M, Karimi M,Yassin MA, El Awwa A,Stoeva I, Raiola G, Galati MC, Bedair EM, Fiscina B, El Kholy M. Growth and endocrine disorders in talassemia. The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17:8-18.doi:10.4103/2230-8210.107808.
13. Chen Z, Shao L, Jiang M, Ba X, Ma B, Zhou T. Interpretation of HbA1c lies at the intersection of analytical methodology, clinical biochemistry and hematology (Review). Exp Ther Med. 2022; 24(6):707. doi: 10.3892/ etm.2022.11643.
14. Abdul-Ghani MA, Abdul-Ghani T, Ali N, Defronzo RA. One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care. 2008; 31(8): 1650–1655. doi.org/10.2337/dc08-0225.
15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC.Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419. doi:10.1007/BF00280883.
16. Sluiter WJ, Erkelens DW, Reitsma WD, Doorenbos H. Glucose tolerance and insulin release, a mathematical approach I. Assay of the β-cell response after oral glucose loading. Diabetes. 1976; 25:241–244. doi: 10.2337/diab.25.4.245.
17. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462-1470. doi:10.2337/ diacare. 22.9.1462.
18. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24:539–548.PIMD:11289482.
19. Pacini G, Mari A. Methods for clinical assessment of insulin sensitivity and β-cell function. Best Pract Res Clin Endocrinol Metab 2003;17:305–322. doi:10.1016/S1521-690X(03)00042-3.
20. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J,Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335-341.doi: 10.2337/dc08-1478.
21. Płaczkowska S, Pawlik-Sobecka L, Kokot I, Piwowar A. Estimation of reference intervals of insulin resistance (HOMA), insulin sensitivity (Matsuda), and insulin secretion sensitivity indices (ISSI-2) in Polish young people. Ann Agric Environ Med. 2020;27:248–254. doi: 10.5114/aoms.2020.93653.
22. Goedecke JH, Dave JA, Faulenbach MV, Utzschneider KM, Lambert EV, West S, Collins M, Olsson T, Walker BR, Seckl JR, Kahn SE, Levitt NS. Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care. 2009; 32: 860-865.doi:10.2337/dc09-1216.
23. De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Kattamis C, Soliman NA, Elalaily R. Clinical and biochemical data of adult thalassemia major patients (TM) with multiple endocrine complications (MEC) versus TM patients with normal endocrine functions: a long-term retrospective study (40 years) in a tertiary care center in Italy. Mediterr J Hematol Infect Dis 2016: 8(1): e2016022. doi.org/10.4084/ MJHID. 2016.022.
24. Alder R, Roesser EB. Introduction to probability and statistics. WH Freeman and Company Eds. Sixth Edition. San Francisco (USA), 1975.PMID:1674139.
25. De Sanctis V, Soliman AT, Daar S, Tzoulis P, Fiscina B, Kattamis C, International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A). Retrospective observational studies: Lights and shadows for medical writers. Acta Biomed. 2022;93(5):e2022319. doi.org /10.23750/ abm.v93i5.13179.
26. Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia. Hemasphere.2022;6(8):e732. doi: 10.1097/HS9.0000000000000732.
27. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Karimi M, Di Maio S, Kattamis C. Screening for glucose dysregulation in β-thalassemia major (β-TM): An update of current evidences and personal experience. Acta Biomed. 2022;93(1)1: e2022158.doi: 10.23750/abm. v93i1.12802.
28. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Gargantini L.Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest. 2006; 29:581–593.doi.org/10.1007/BF03344156.
29. Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202:199–211.doi:10.1016/j.taap.2004.06.021.
30. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol. 2015; 6: 226–239. doi: 10.1016/j.redox.2015.07.018
31. Goldberg EK, Lal A, Fung EB. Nutrition in Thalassemia: A Systematic Review of Deficiency, Relations to Morbidity, and Supplementation Recommendations. J Pediatr Hematol Oncol. 2022; 44(1): 1–11. doi: 10.1097/MPH.0000000000002291.
32. Soliman A, De Sanctis V, Yassin M. Vitamin D status in thalassemia major: an update. Mediterr J Hematol Infect Dis. 2013;5:e2013057. doi: 10.4084/MJHID.2013.057.
33. Huang J ,Shen J ,Yang Q, Cheng Z, Chen X, Yu T, Zhong J, Su Y, Biling Liang HG, Quantification of pancreatic iron overload and fat infiltration and their correlation with glucose disturbance in pediatric thalassemia major patients. Quant Imaging Med Surg. 2021; 11(2): 665–675,doi: 10.21037/ qims-20-292.
34. De Sanctis V, Soliman A, Daar S, Tzoulis P, Yassin MA, Di Maio S, Kattamis C. Insulin-like growth factor -1 (IGF-1) and glucose dysregulation in young adult patients with β-thalassemia major: causality or potential link? Acta Biomed. 2022; 93 (6): e2022331.doi: 10.23750/abm.v93i6.13288.