Main Article Content

Buket Altinok Gunes
Aynur Karadag Gurel
Semih Dalkilic
Nevin Belder
Zeynep Ozkeserli
Hilal Ozdag Sevgili
Meral Beksac
Nilgun Sayinalp
Abdullah Munci Yagci
Asuman Sunguroglu


AML, CD34+ cells, beta-catenin, microarray, DEGs


Background: Acute myeloid leukaemia(AML) is a disease of the haematopoietic stem cells. Beta-catenin, a key element of the Wnt signalling, which is particularly active in various cancers. Our aim of this study was to determine beta-catenin gene expression levels in AML patients. Then, it is planned to compare the genes between AML grouped according to beta-catenin gene expression levels by DNA microarray. When the gene group identified in this way is combined with the genes in the control group, the aim is to determine the genes that are associated with beta-catenin in AML.

Methods: In this study, beta-catenin gene expression levels were determined in 19 AML patients and 3 controls by qRT-PCR. Transcriptome analysis was performed on AML grouped according to beta-catenin expression levels. Differentially expressed genes(DEGs) were identified and investigated with using DAVID, GO, KEGG and STRING.

Results: The transcriptome profiles of our AML samples showed different molecular signature profiles according on their beta-catenin levels(high-low). A total of 20 genes have been identified as hub genes. Among these, TTK, HJURP, KIF14 and BTF3, RPL17, RSL1D1 were found to be associated with poor survival and suggested to be associated with beta-catenin in AML. Furthermore, for the first time in our study, the ELOV6 gene, which is the most highly up-regulated gene in human AML samples, was correlated with a poor prognosis via beta-catenin high levels.

Conclusion: It is suggested that the identification of beta-catenin-related gene profiles in AML may help to select new therapeutic targets for the treatment of AML.


Download data is not yet available.

Abstract 120
PDF Downloads 88
Suppl. Files Downloads 57
HTML Downloads 5


1. Shipley, J.L., and Butera, J.N. (2009). Acute myelogenous leukemia. Exp Hematol 37, 649-658. 10.1016/j.exphem.2009.04.002.
2. Ilyas, M. (2005). Wnt signalling and the mechanistic basis of tumour development. J Pathol 205, 130-144. 10.1002/path.1692.
3. Frenquelli, M., and Tonon, G. (2020). WNT Signaling in Hematological Malignancies. Front Oncol 10, 615190. 10.3389/fonc.2020.615190.
4. Hayat, R., Manzoor, M., and Hussain, A. (2022). Wnt signaling pathway: A comprehensive review. Cell Biol Int 46, 863-877. 10.1002/cbin.11797.
5. Li, X.X., Guo, H., Zhou, J.D., Wu, D.H., Ma, J.C., Wen, X.M., Zhang, W., Xu, Z.J., Lin, J., and Jun, Q. (2018). Overexpression of CTNNB1: Clinical implication in Chinese de novo acute myeloid leukemia. Pathol Res Pract 214, 361-367. 10.1016/j.prp.2018.01.003.
6. Morgan, R.G., Ridsdale, J., Payne, M., Heesom, K.J., Wilson, M.C., Davidson, A., Greenhough, A., Davies, S., Williams, A.C., Blair, A., et al. (2019). LEF-1 drives aberrant beta-catenin nuclear localization in myeloid leukemia cells. Haematologica 104, 1365-1377. 10.3324/haematol.2018.202846.
7. Wagstaff, M., Coke, B., Hodgkiss, G.R., and Morgan, R.G. (2022). Targeting beta-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 42. 10.1042/BSR20211841.
8. Serinsoz, E., Neusch, M., Busche, G., Wasielewski, R., Kreipe, H., and Bock, O. (2004). Aberrant expression of beta-catenin discriminates acute myeloid leukaemia from acute lymphoblastic leukaemia. Br J Haematol 126, 313-319. 10.1111/j.1365-2141.2004.05049.x.
9. Simon, M., Grandage, V.L., Linch, D.C., and Khwaja, A. (2005). Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 24, 2410-2420. 10.1038/sj.onc.1208431.
10. Ysebaert, L., Chicanne, G., Demur, C., De Toni, F., Prade-Houdellier, N., Ruidavets, J.B., Mansat-De Mas, V., Rigal-Huguet, F., Laurent, G., Payrastre, B., et al. (2006). Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 20, 1211-1216. 10.1038/sj.leu.2404239.
11. Xu, J., Suzuki, M., Niwa, Y., Hiraga, J., Nagasaka, T., Ito, M., Nakamura, S., Tomita, A., Abe, A., Kiyoi, H., et al. (2008). Clinical significance of nuclear non-phosphorylated beta-catenin in acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 140, 394-401. 10.1111/j.1365-2141.2007.06914.x.
12. Chen, C.C., Gau, J.P., You, J.Y., Lee, K.D., Yu, Y.B., Lu, C.H., Lin, J.T., Lan, C., Lo, W.H., Liu, J.M., and Yang, C.F. (2009). Prognostic significance of beta-catenin and topoisomerase IIalpha in de novo acute myeloid leukemia. Am J Hematol 84, 87-92. 10.1002/ajh.21334.
13. Gandillet, A., Park, S., Lassailly, F., Griessinger, E., Vargaftig, J., Filby, A., Lister, T.A., and Bonnet, D. (2011). Heterogeneous sensitivity of human acute myeloid leukemia to beta-catenin down-modulation. Leukemia 25, 770-780. 10.1038/leu.2011.17.
14. Jiang, X., Mak, P.Y., Mu, H., Tao, W., Mak, D.H., Kornblau, S., Zhang, Q., Ruvolo, P., Burks, J.K., Zhang, W., et al. (2018). Disruption of Wnt/beta-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in FLT3-Mutant Acute Myeloid Leukemia. Clin Cancer Res 24, 2417-2429. 10.1158/1078-0432.CCR-17-1556.
15. Han, H., Zhu, B., Xie, J., Huang, Y., Geng, Y., Chen, K., and Wang, W. (2022). Expression level and prognostic potential of beta-catenin-interacting protein in acute myeloid leukemia. Medicine (Baltimore) 101, e30022. 10.1097/MD.0000000000030022.
16. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 method. Methods 25, 402-408. 10.1006/meth.2001.1262.
17. Benjamini, Y., and Cohen, R. (2017). Weighted false discovery rate controlling procedures for clinical trials. Biostatistics 18, 91-104. 10.1093/biostatistics/kxw030.
18. Karadag Gurel, A., and Gurel, S. (2022). To detect potential pathways and target genes in infantile Pompe patients using computational analysis. Bioimpacts 12, 89-105. 10.34172/bi.2022.23467.
19. Karadağ Gürel, A., and Gürel, S. (2022). Identification of novel potential molecular targets associated with pediatric septic shock by integrated bioinformatics analysis and validation of in vitro septic shock model. Journal of Surgery and Medicine 6, 932-938. 10.28982/josam.7461.
20. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45, W98-W102. 10.1093/nar/gkx247.
21. Shi, L., Huang, Y., Huang, X., Zhou, W., Wei, J., Deng, D., and Lai, Y. (2020). Analyzing the key gene expression and prognostics values for acute myeloid leukemia. Transl Cancer Res 9, 7284-7298. 10.21037/tcr-20-3177.
22. de Jonge, H.J., Woolthuis, C.M., Vos, A.Z., Mulder, A., van den Berg, E., Kluin, P.M., van der Weide, K., de Bont, E.S., Huls, G., Vellenga, E., and Schuringa, J.J. (2011). Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia 25, 1825-1833. 10.1038/leu.2011.172.
23. Majeti, R., Becker, M.W., Tian, Q., Lee, T.L., Yan, X., Liu, R., Chiang, J.H., Hood, L., Clarke, M.F., and Weissman, I.L. (2009). Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci U S A 106, 3396-3401. 10.1073/pnas.0900089106.
24. Ling, V.Y., Straube, J., Godfrey, W., Haldar, R., Janardhanan, Y., Cooper, L., Bruedigam, C., Cooper, E., Tavakoli Shirazi, P., Jacquelin, S., et al. (2023). Targeting cell cycle and apoptosis to overcome chemotherapy resistance in acute myeloid leukemia. Leukemia 37, 143-153. 10.1038/s41375-022-01755-2.
25. Zhong, F., Yang, Y., Yao, F., Liu, J., Yu, X., Wang, X.L., Huang, B., and Wang, X.Z. (2023). Identification of cellular senescence-related signature for predicting prognosis and therapeutic response of acute myeloid leukemia. Aging (Albany NY) 15, 11217-11226. 10.18632/aging.205123.
26. Martelli, A.M., Paganelli, F., Chiarini, F., Evangelisti, C., and McCubrey, J.A. (2020). The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers (Basel) 12. 10.3390/cancers12020333.
27. Park, S.S., and Baek, K.H. (2022). Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 23. 10.3390/ijms23010514.
28. Xian, F., Zhao, C.X., Huang, C., Bie, J., and Xu, G.H. (2023). The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine 102. ARTN e35038
29. Bruno, S., di Rorà, A.G.L., Napolitano, R., Soverini, S., Martinelli, G., and Simonetti, G. (2022). CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Canc Res 41. ARTN 159
30. Hadjihannas, M.V., Bernkopf, D.B., Brückner, M., and Behrens, J. (2012). Cell cycle control of Wnt/β-catenin signalling by conductin/axin2 through CDC20. Embo Rep 13, 347-354. 10.1038/embor.2012.12.
31. Morita, H., Matsuoka, A., Kida, J., Tabata, H., Tohyama, K., and Tohyama, Y. (2018). KIF20A, highly expressed in immature hematopoietic cells, supports the growth of HL60 cell line. Int J Hematol 108, 607-614. 10.1007/s12185-018-2527-y.
32. Ersvaer, E., Zhang, J.Y., McCormack, E., Olsnes, A., Anensen, N., Tan, E.M., Gjertsen, B.T., and Bruserud, O. (2007). Cyclin B1 is commonly expressed in the cytoplasm of primary human acute myelogenous leukemia cells and serves as a leukemia-associated antigen associated with autoantibody response in a subset of patients. Eur J Haematol 79, 210-225. 10.1111/j.1600-0609.2007.00899.x.
33. Li, R., Jiang, X., Zhang, Y., Wang, S., Chen, X., Yu, X., Ma, J., and Huang, X. (2019). Cyclin B2 Overexpression in Human Hepatocellular Carcinoma is Associated with Poor Prognosis. Arch Med Res 50, 10-17. 10.1016/j.arcmed.2019.03.003.
34. Wang, D., Sun, H., Li, X., Wang, G., Yan, G., Ren, H., and Hou, B. (2022). CCNB2 is a novel prognostic factor and a potential therapeutic target in low-grade glioma. Biosci Rep 42. 10.1042/BSR20211939.
35. Shi, M., Guo, H., Bai, Y., Niu, J., Niu, X., Sun, K., and Chen, Y. (2022). Upregulated mitosis-associated genes CENPE, CENPF, and DLGAP5 predict poor prognosis and chemotherapy resistance of Acute Myeloid Leukemia. Cancer Biomark 35, 11-25. 10.3233/CBM-203170.
36. Chen, R., Liu, J., Hu, J., Li, C., Liu, Y., and Pan, W. (2023). DLGAP5 knockdown inactivates the Wnt/beta-catenin signal to repress endometrial cancer cell malignant activities. Environ Toxicol 38, 685-693. 10.1002/tox.23720.
37. Du, R., Huang, C., Liu, K., Li, X., and Dong, Z. (2021). Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 20, 15. 10.1186/s12943-020-01305-3.
38. Kim, S.J., Jang, J.E., Cheong, J.W., Eom, J.I., Jeung, H.K., Kim, Y., Hwang, D.Y., and Min, Y.H. (2012). Aurora A kinase expression is increased in leukemia stem cells, and a selective Aurora A kinase inhibitor enhances Ara-C-induced apoptosis in acute myeloid leukemia stem cells. Korean J Hematol 47, 178-185. 10.5045/kjh.2012.47.3.178.
39. Shah, K., Ahmed, M., and Kazi, J.U. (2021). The Aurora kinase/beta-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 5, 13. 10.1038/s41698-021-00148-5.
40. Rapoport, A.P., Neuman, B., Fleksher, D., Ford, T., and Nandi, A.K. (2006). Protein Interaction Partners of PDZ-Binding Kinase (PBK) Implicate a Possible Role in Leukemogenesis. Blood 108, 4318-4318. 10.1182/blood.V108.11.4318.4318.
41. Nandi, A., Tidwell, M., Karp, J., and Rapoport, A.P. (2004). Protein expression of PDZ-binding kinase is up-regulated in hematologic malignancies and strongly down-regulated during terminal differentiation of HL-60 leukemic cells. Blood Cells Mol Dis 32, 240-245. 10.1016/j.bcmd.2003.10.004.
42. Brown-Clay, J.D., Shenoy, D.N., Timofeeva, O., Kallakury, B.V., Nandi, A.K., and Banerjee, P.P. (2015). PBK/TOPK enhances aggressive phenotype in prostate cancer via beta-catenin-TCF/LEF-mediated matrix metalloproteinases production and invasion. Oncotarget 6, 15594-15609. 10.18632/oncotarget.3709.
43. Yu, J., Gao, G., Wei, X., and Wang, Y. (2022). TTK Protein Kinase promotes temozolomide resistance through inducing autophagy in glioblastoma. BMC Cancer 22, 786. 10.1186/s12885-022-09899-1.
44. Zaman, G.J.R., de Roos, J., Libouban, M.A.A., Prinsen, M.B.W., de Man, J., Buijsman, R.C., and Uitdehaag, J.C.M. (2017). TTK Inhibitors as a Targeted Therapy for CTNNB1 (beta-catenin) Mutant Cancers. Mol Cancer Ther 16, 2609-2617. 10.1158/1535-7163.MCT-17-0342.
45. Wang, M., and Wang, L.R. (2016). [Reseach Progress of Ki-67 in Acute Myeloid Leukemia-Review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 24, 1264-1268. 10.7534/j.issn.1009-2137.2016.04.057.
46. Sun, X., and Kaufman, P.D. (2018). Ki-67: more than a proliferation marker. Chromosoma 127, 175-186. 10.1007/s00412-018-0659-8.
47. He, J., Green, A.R., Li, Y., Chan, S.Y.T., and Liu, D.X. (2020). SPAG5: An Emerging Oncogene. Trends Cancer 6, 543-547. 10.1016/j.trecan.2020.03.006.
48. Gu, Y., Chu, M.Q., Xu, Z.J., Yuan, Q., Zhang, T.J., Lin, J., and Zhou, J.D. (2022). Comprehensive analysis of
expression as a prognostic and predictive biomarker in acute myeloid leukemia by integrative bioinformatics and clinical validation. Bmc Med Genomics 15. ARTN 38
49. Fang, Y.F., and Zhang, X.W. (2016). Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle 15, 895-907. 10.1080/15384101.2016.1152430.
50. Zhou, W., Yang, Y., Xia, J.L., Wang, H., Salama, M.E., Xiong, W., Xu, H.W., Shetty, S., Chen, T.H., Zeng, Z.Y., et al. (2013). Induces Drug Resistance Mainly through Activation of Efflux Drug Pumps and Is Associated with Poor Prognosis in Myeloma and Other Cancers. Cancer Cell 23, 48-62. 10.1016/j.ccr.2012.12.001.
51. Narimani, M., Sharifi, M., and Jalili, A. (2019). Knockout Of BIRC5 Gene By CRISPR/Cas9 Induces Apoptosis And Inhibits Cell Proliferation In Leukemic Cell Lines, HL60 And KG1. Blood Lymphat Cancer 9, 53-61. 10.2147/BLCTT.S230383.
52. Bai, R., Yuan, C., Sun, W.J., Zhang, J.G., Luo, Y., Gao, Y.P., Li, Y.Y., Gong, Y., and Xie, C.H. (2021). NEK2 plays an active role in Tumorigenesis and Tumor Microenvironment in Non-Small Cell Lung Cancer (Retracted article. See vol. 18, pg. 3943, 2022). Int J Biol Sci 17, 1995-2008. 10.7150/ijbs.59019.
53. Zhou, J.C., Lai, J.W., Cheng, Y.Y., and Qu, W.X. (2022). NEK2 Serves as a Novel Biomarker and Enhances the Tumorigenicity of Clear-CellRenal-Cell Carcinoma by Activating WNT/
-Catenin Pathway. Evid-Based Compl Alt 2022. Artn 1890823
54. Greiner, J., Brown, E., Bullinger, L., Hills, R.K., Morris, V., Döhner, H., Mills, K.I., and Guinn, B.A. (2021). Survivin' Acute Myeloid Leukaemia-A Personalised Target for inv(16) Patients. International Journal of Molecular Sciences 22. ARTN 10482
55. Mehraj, U., Aisha, S., Sofi, S., and Mir, M.A. (2022). Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: A comprehensive analysis. Advances in Cancer Biology - Metastasis 4. 10.1016/j.adcanc.2022.100037.
56. Chen, P.Y., Tien, H.J., Chen, S.F., Horng, C.T., Tang, H.L., Jung, H.L., Wu, M.J., and Yen, J.H. (2018). Response of Myeloid Leukemia Cells to Luteolin is Modulated by Differentially Expressed Pituitary Tumor-Transforming Gene 1 (PTTG1) Oncoprotein. Int J Mol Sci 19. 10.3390/ijms19041173.
57. Zhang, X., Wu, N., Huang, H., Li, S., Liu, S., Zhang, R., Huang, Y., Lyu, H., Xiao, S., Ali, D.W., et al. (2023). Phosphorylated PTTG1 switches its subcellular distribution and promotes beta-catenin stabilization and subsequent transcription activity. Oncogene 42, 2439-2455. 10.1038/s41388-023-02767-7.
58. Tan, J., Peeraphong, L., Ruchawapol, C., Zhang, J., Zhao, J., Fu, W., Zhang, L., and Xu, H. (2023). Emerging role of HJURP as a therapeutic target in cancers. Acta Materia Medica 2. 10.15212/amm-2023-0008.
59. Liao, G.B., Li, X.Z., Zeng, S., Liu, C., Yang, S.M., Yang, L., Hu, C.J., and Bai, J.Y. (2018). Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 16, 57. 10.1186/s12964-018-0266-6.
60. Wierstra, I. (2013). The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 118, 97-398. 10.1016/B978-0-12-407173-5.00004-2.
61. Khan, I., Halasi, M., Patel, A., Schultz, R., Kalakota, N., Chen, Y.H., Aardsma, N., Liu, L., Crispino, J.D., Mahmud, N., et al. (2018). FOXM1 contributes to treatment failure in acute myeloid leukemia. JCI Insight 3. 10.1172/jci.insight.121583.
62. Sheng, Y., Yu, C., Liu, Y., Hu, C., Ma, R., Lu, X., Ji, P., Chen, J., Mizukawa, B., Huang, Y., et al. (2020). FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 11, 928. 10.1038/s41467-020-14590-9.
63. Ma, X., Xie, M., Xue, Z., Yao, J., Wang, Y., Xue, X., and Wang, J. (2022). HMMR associates with immune infiltrates and acts as a prognostic biomaker in lung adenocarcinoma. Comput Biol Med 151, 106213. 10.1016/j.compbiomed.2022.106213.
64. Wang, Z.Z., Yang, J., Jiang, B.H., Di, J.B., Gao, P., Peng, L., and Su, X.Q. (2018). KIF14 promotes cell proliferation via activation of Akt and is directly targeted by miR-200c in colorectal cancer. Int J Oncol 53, 1939-1952. 10.3892/ijo.2018.4546.
65. Jiang, W., Wang, J., Yang, X., Shan, J., Zhang, Y., Shi, X., Wang, Y., Chenyan, A., Chang, J., Wang, Y., et al. (2023). KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-kappaB pathway in cholangiocarcinoma. Oncogene 42, 1392-1404. 10.1038/s41388-023-02661-2.
66. Cui, Z., Mo, J., Song, P., Wang, L., Wang, R., Cheng, F., Wang, L., Zou, F., Guan, X., Zheng, N., et al. (2022). Comprehensive bioinformatics analysis reveals the prognostic value, predictive value, and immunological roles of ANLN in human cancers. Front Genet 13, 1000339. 10.3389/fgene.2022.1000339.
67. Derenzini, M., Montanaro, L., and Trere, D. (2017). Ribosome biogenesis and cancer. Acta Histochem 119, 190-197. 10.1016/j.acthis.2017.01.009.
68. Lu, Y., Wang, S., and Jiao, Y. (2023). The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 13. 10.3390/biom13111593.
69. Dannheisig, D.P., Bachle, J., Tasic, J., Keil, M., and Pfister, A.S. (2021). The Wnt/beta-Catenin Pathway is Activated as a Novel Nucleolar Stress Response. J Mol Biol 433, 166719. 10.1016/j.jmb.2020.11.018.
70. Derenzini, E., Rossi, A., and Trere, D. (2018). Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. J Hematol Oncol 11, 75. 10.1186/s13045-018-0609-1.
71. Li, X.P., Jiao, J.U., Lu, L.I., Zou, Q., Zhu, S., and Zhang, Y. (2016). Overexpression of ribosomal L1 domain containing 1 is associated with an aggressive phenotype and a poor prognosis in patients with prostate cancer. Oncol Lett 11, 2839-2844. 10.3892/ol.2016.4294.
72. Liu, X., Chen, J., Long, X., Lan, J., Liu, X., Zhou, M., Zhang, S., and Zhou, J. (2022). RSL1D1 promotes the progression of colorectal cancer through RAN-mediated autophagy suppression. Cell Death Dis 13, 43. 10.1038/s41419-021-04492-z.
73. Dai, H., Zhang, S., Ma, R., and Pan, L. (2019). Celecoxib Inhibits Hepatocellular Carcinoma Cell Growth and Migration by Targeting PNO1. Med Sci Monit 25, 7351-7360. 10.12659/MSM.919218.
74. Lin, C., Yuan, H., Wang, W., Zhu, Z., Lu, Y., Wang, J., Feng, F., and Wu, J. (2020). Importance of PNO1 for growth and survival of urinary bladder carcinoma: Role in core-regulatory circuitry. J Cell Mol Med 24, 1504-1515. 10.1111/jcmm.14835.
75. Liu, D., Lin, L., Wang, Y., Chen, L., He, Y., Luo, Y., Qi, L., Guo, Y., Chen, L., Han, Z., et al. (2020). PNO1, which is negatively regulated by miR-340-5p, promotes lung adenocarcinoma progression through Notch signaling pathway. Oncogenesis 9, 58. 10.1038/s41389-020-0241-0.
76. .
77. Ge, X., Yuan, L., Cheng, B., and Dai, K. (2021). Identification of seven tumor-educated platelets RNAs for cancer diagnosis. J Clin Lab Anal 35, e23791. 10.1002/jcla.23791.
78. Hong, Y., Choi, H.M., Cheong, H.S., Shin, H.D., Choi, C.M., and Kim, W.J. (2019). Epigenome-Wide Association Analysis of Differentially Methylated Signals in Blood Samples of Patients with Non-Small-Cell Lung Cancer. J Clin Med 8. 10.3390/jcm8091307.
79. Guo, H., Xu, J., Xing, P., Li, Q., Wang, D., Tang, C., Palhais, B., Roels, J., Liu, J., Pan, S., et al. (2023). RNA helicase DHX15 exemplifies a unique dependency in acute leukemia. Haematologica 108, 2029-2043. 10.3324/haematol.2022.282066.
80. .
81. El Khoury, W., and Nasr, Z. (2021). Deregulation of ribosomal proteins in human cancers. Biosci Rep 41. 10.1042/BSR20211577.
82. Urwanisch, L., Unger, M.S., Sieberer, H., Dang, H.H., Neuper, T., Regl, C., Vetter, J., Schaller, S., Winkler, S.M., Kerschbamer, E., et al. (2023). The Class IIA Histone Deacetylase (HDAC) Inhibitor TMP269 Downregulates Ribosomal Proteins and Has Anti-Proliferative and Pro-Apoptotic Effects on AML Cells. Cancers 15. ARTN 1039
83. Li, J., Xie, S., Zhang, B., He, W., Zhang, Y., Hua, H., and Yang, L. (2022). 10.21203/
84. Fu, Z., Wang, C., Chen, Y., Zhang, X., Wang, X., and Xie, X. (2019). Down-regulation of UTP23 promotes paclitaxel resistance and predicts poorer prognosis in ovarian cancer. Pathol Res Pract 215, 152625. 10.1016/j.prp.2019.152625.
85. Gonskikh, Y., Stoute, J., Shen, H., Budinich, K., Pingul, B., Schultz, K., Elashal, H., Marmorstein, R., Shi, J., and Liu, K.F. (2023). Noncatalytic regulation of 18S rRNA methyltransferase DIMT1 in acute myeloid leukemia. Genes Dev 37, 321-335. 10.1101/gad.350298.122.
86. Abdelhaleem, M. (2004). Over-expression of RNA helicases in cancer. Anticancer Res 24, 3951-3953.
87. Liu, Y., Xie, Y., Ding, J., and Wu, L. (2021). 10.21203/
88. Xie, Y.J., Liu, Y., Ding, J.S., Li, G.M., Ni, B., Pang, H.F., Hu, X., and Wu, L.L. (2022). Identification of
as a Potential Oncogene of Invasive Metastasis and Proliferation in PDAC. Front Cell Dev Biol 10. ARTN 762372
89. Wu, S., Fahmy, N., and Alachkar, H. (2019). The mitochondrial transcription machinery genes are upregulated in acute myeloid leukemia and associated with poor clinical outcome. Metabol Open 2, 100009. 10.1016/j.metop.2019.100009.
90. Zhou, W.L., Yun, Z.N., Wang, T., Li, C., and Zhang, J.T. (2021). BTF3-mediated regulation of BMI1 promotes colorectal cancer through influencing epithelial-mesenchymal transition and stem cell-like traits. Int J Biol Macromol 187, 800-810. 10.1016/j.ijbiomac.2021.07.106.