COVID-19 induces prolonged immunological exhaustion leading to relapse of hematological malignancies except in hematopoietic cell transplant recipients

Main Article Content

SUPARNO CHAKRABARTI
Snigdha Banerjee
Mahak Agarwal
Gitali Bhagawati
Nilanjan Saha
SARITA JAISWAL

Keywords

Covid-19, Relapse, Cancer, immune exhaustion, NKG2A, PD-1, acute leukemia

Abstract

We studied the impact of COVID-19 on relapse in patients with hematological malignancies who had achieved complete remission (CR) and were either treatment-free or maintained on uninterrupted therapy over a 24-month period, excluding patients who relapsed or succumbed to the infection within 30 days. 

Downloads

Download data is not yet available.


Abstract 318
PDF Downloads 193
HTML Downloads 52

References

References:
[1] T.P. Hanna, G.A. Evans, and C.M. Booth, Cancer, COVID-19 and the precautionary principle: prioritizing treatment during a global pandemic. Nat Rev Clin Oncol (2020).
[2] J. Jee, M.B. Foote, M. Lumish, A.J. Stonestrom, B. Wills, V. Narendra, V. Avutu, Y.R. Murciano-Goroff, J.E. Chan, A. Derkach, J. Philip, R. Belenkaya, M. Kerpelev, M. Maloy, A. Watson, C. Fong, Y. Janjigian, L.A. Diaz, Jr., K.L. Bolton, and M.S. Pessin, Chemotherapy and COVID-19 Outcomes in Patients With Cancer. J Clin Oncol 38 (2020) 3538-3546.
[3] P. Fedele, V. Sanna, A. Fancellu, A. Marino, N. Calvani, and S. Cinieri, De-escalating cancer treatments during COVID 19 pandemic: Is metronomic chemotherapy a reasonable option? Crit Rev Oncol Hematol 157 (2021) 103148.
[4] C. Nunez-Torron, V. Garcia-Gutierrez, M.C. Tenorio-Nunez, G. Moreno-Jimenez, F.J. Lopez-Jimenez, and P. Herrera-Puente, Poor outcome in patients with acute leukemia on intensive chemotherapy and COVID-19. Bone Marrow Transplant 56 (2021) 267-269.
[5] E. Brissot, M. Labopin, F. Baron, A. Bazarbachi, G. Bug, F. Ciceri, J. Esteve, S. Giebel, M.H. Gilleece, N.C. Gorin, F. Lanza, Z. Peric, A. Ruggeri, J. Sanz, B.N. Savani, C. Schmid, R. Shouval, A. Spyridonidis, J. Versluis, A. Nagler, and M. Mohty, Management of patients with acute leukemia during the COVID-19 outbreak: practical guidelines from the acute leukemia working party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 56 (2021) 532-535.
[6] F. Martin-Moro, C. Nunez-Torron, L. Perez-Lamas, C. Jimenez-Chillon, J. Marquet-Palomanes, F.J. Lopez-Jimenez, and P. Herrera-Puente, The impact of lockdown during the COVID-19 pandemic on newly acute myeloid leukemia patients: Single-centre comparative study between 2019 and 2020 cohorts in Madrid. Leuk Res 101 (2021) 106518.
[7] H. Zalpoor, A. Akbari, N. Nayerain Jazi, M. Liaghat, and M. Bakhtiyari, Possible role of autophagy induced by COVID-19 in cancer progression, chemo-resistance, and tumor recurrence. Infect Agent Cancer 17 (2022) 38.
[8] J. Xie, W. Qi, L. Cao, Y. Tan, J. Huang, X. Gu, B. Chen, P. Shen, Y. Zhao, Y. Zhang, Q. Zhao, H. Huang, Y. Wang, H. Fang, Z. Jin, H. Li, X. Zhao, X. Qian, F. Xu, D. Ou, S. Wang, C. Xu, M. Li, Z. Jiang, Y. Wang, X. Huang, and J. Chen, Predictors for Fear of Cancer Recurrence in Breast Cancer Patients Referred to Radiation Therapy During the COVID-19 Pandemic: A Multi-Center Cross-Section Survey. Front Oncol 11 (2021) 650766.
[9] I. Rahimmanesh, L. Shariati, N. Dana, Y. Esmaeili, G. Vaseghi, and S. Haghjooy Javanmard, Cancer Occurrence as the Upcoming Complications of COVID-19. Front Mol Biosci 8 (2021) 813175.
[10] D. Bagautdinova, K.C. Bacharz, C.L. Bylund, M. Sae-Hau, E.S. Weiss, M. Rajotte, G. Lincoln, T.S. Vasquez, N.D. Parker, K.B. Wright, and C.L. Fisher, Understanding the Impact of COVID-19 on Chronic Lymphocytic Leukemia (CLL) Caregiving and Related Resource Needs. J Clin Med 12 (2023).
[11] S.R. Jaiswal, J. Arunachalam, A. Bhardwaj, A. Saifullah, R. Lakhchaura, M. Soni, G. Bhagawati, and S. Chakrabarti, Impact of adaptive natural killer cells, KLRC2 genotype and cytomegalovirus reactivation on late mortality in patients with severe COVID-19 lung disease. Clin Transl Immunology 11 (2022) e1359.
[12] S.R. Jaiswal, J. Arunachalam, A. Saifullah, R. Lakhchaura, D. Tailor, A. Mehta, G. Bhagawati, H. Aiyer, B. Khamar, S.V. Malhotra, and S. Chakrabarti, Impact of an Immune Modulator Mycobacterium-w on Adaptive Natural Killer Cells and Protection Against COVID-19. Front Immunol 13 (2022) 887230.
[13] S.R. Jaiswal, P. Malhotra, D.K. Mitra, and S. Chakrabarti, Focusing On A Unique Innate Memory Cell Population Of Natural Killer Cells In The Fight Against COVID-19: Harnessing The Ubiquity Of Cytomegalovirus Exposure. Mediterr J Hematol Infect Dis 12 (2020) e2020047.
[14] S.R. Jaiswal, A. Saifullah, J. Arunachalam, R. Lakhchaura, D. Tailor, A. Mehta, G. Bhagawati, H. Aiyer, S. Biswas, B. Khamar, S.V. Malhotra, and S. Chakrabarti, Augmenting Vaccine Efficacy against Delta Variant with 'Mycobacterium-w'-Mediated Modulation of NK-ADCC and TLR-MYD88 Pathways. Vaccines (Basel) 11 (2023).
[15] S.R. Jaiswal, S. Chakraborty, R. Lakhchaura, P. Shashi, A. Mehta, M. Soni, and S. Chakrabarti, Early and Sustained Expansion of Adaptive Natural Killer Cells Following Haploidentical Transplantation and CTLA4Ig-Primed Donor Lymphocyte Infusions Dissociate Graft-versus-Leukemia and Graft-versus-Host Effects. Transplant Cell Ther 27 (2021) 144-151.
[16] C. Phetsouphanh, B. Jacka, S. Ballouz, K.J.L. Jackson, D.B. Wilson, B. Manandhar, V. Klemm, H.X. Tan, A. Wheatley, A. Aggarwal, A. Akerman, V. Milogiannakis, M. Starr, P. Cunningham, S.G. Turville, S.J. Kent, A. Byrne, B.J. Brew, D.R. Darley, G.J. Dore, A.D. Kelleher, and G.V. Matthews, Improvement of immune dysregulation in individuals with long COVID at 24-months following SARS-CoV-2 infection. Nat Commun 15 (2024) 3315.
[17] E. Untersmayr, C. Venter, P. Smith, J. Rohrhofer, C. Ndwandwe, J. Schwarze, E. Shannon, M. Sokolowska, C. Sadlier, and L. O'Mahony, Immune Mechanisms Underpinning Long COVID: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol 185 (2024) 489-502.
[18] K. Yin, M.J. Peluso, X. Luo, R. Thomas, M.G. Shin, J. Neidleman, A. Andrew, K.C. Young, T. Ma, R. Hoh, K. Anglin, B. Huang, U. Argueta, M. Lopez, D. Valdivieso, K. Asare, T.M. Deveau, S.E. Munter, R. Ibrahim, L. Standker, S. Lu, S.A. Goldberg, S.A. Lee, K.L. Lynch, J.D. Kelly, J.N. Martin, J. Munch, S.G. Deeks, T.J. Henrich, and N.R. Roan, Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat Immunol 25 (2024) 218-225.
[19] A. Horowitz, Z. Djaoud, N. Nemat-Gorgani, J. Blokhuis, H.G. Hilton, V. Beziat, K.J. Malmberg, P.J. Norman, L.A. Guethlein, and P. Parham, Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol 1 (2016).
[20] V. Beziat, B. Hervier, A. Achour, D. Boutolleau, A. Marfain-Koka, and V. Vieillard, Human NKG2A overrides NKG2C effector functions to prevent autoreactivity of NK cells. Blood 117 (2011) 4394-6.
[21] D. Bortolotti, V. Gentili, S. Rizzo, A. Rotola, and R. Rizzo, SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway. Cells 9 (2020).
[22] L. Antonioli, M. Fornai, C. Pellegrini, and C. Blandizzi, NKG2A and COVID-19: another brick in the wall. Cellular & Molecular Immunology (2020).
[23] S.R. Jaiswal, P. Bhakuni, G. Bhagawati, H.M. Aiyer, M. Soni, N. Sharma, R.R. Jaiswal, A. Chakrabarti, and S. Chakrabarti, CTLA4Ig-primed donor lymphocyte infusions following haploidentical transplantation improve outcome with a distinct pattern of early immune reconstitution as compared to conventional donor lymphocyte infusions in advanced hematological malignancies. Bone Marrow Transplant 56 (2021) 185-194.
[24] R. Zeiser, and L. Vago, Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 133 (2019) 1290-1297.