MOLECULAR MECHANISM OF TRAF6 IN MALIGNANT PROLIFERATION OF HUMAN NK/T CELL LYMPHOMA CELL HANK1
Main Article Content
Keywords
Human NK/T cell lymphoma, Ubiquitination, TRAF6, MST1, HANK1, Malignant proliferation, PCNA, MG132
Abstract
Background: Ubiquitination affects cancer progression by regulating both tumor-suppressing and tumor-promoting proteins in cancer. The current study sought to evaluate the role of TNF receptor associated factor 6 (TRAF6) in malignant proliferation of human NK/T cell lymphoma cell line HANK1.
Methods: TRAF6 and MST1 expression levels in HANK1 cells were determined by RT-qPCR and Western blot analysis, followed by transfection of si-TRAF6 into HANK1 cells. Cell viability and proliferation were assessed by cell-counting kit-8 and 5-Ethynyl-2’-deoxyuridine (EdU) assays, and proliferating cell nuclear antigen (PCNA) expression levels in cells were determined by Western blot analysis. After that, cells were treated with MG132, followed by analysis of the binding of TRAF6 to macrophage stimulating 1 (MST1) via co-immunoprecipitation and the ubiquitination level of MST1 via the ubiquitination assay. The functional rescue experiment was performed with si-MST1 and si-TRAF6 in cells.
Results: TRAF6 was upregulated in HANK1 cells. Inhibition of TRAF6 reduced cell viability and the number of EdU-positive cells, and downregulated PCNA expression. TRAF6 bound to MST1 to promote ubiquitination-meditated degradation of MST1. After MG132 treatment, the ubiquitination level of MST1 was declined. Silencing MST1 abolished the inhibition of TRAF6 on malignant proliferation of HANK1 cells.
Conclusion: TRAF6 was upregulated in HANK1 cells and bound to MST1 to promote ubiquitination-meditated degradation of MST1, consequently facilitating malignant proliferation of HANK1 cells.
Downloads
Abstract 34
PDF Downloads 15
html Downloads 11
References
2. Xue W, Zhang M. Updating targets for natural killer/T-cell lymphoma immunotherapy. Cancer Biol Med. 2021 Feb 15;18(1):52-62. http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0400
3. Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021 Sep;35(9):2460-2468. http://dx.doi.org/10.1038/s41375-021-01313-2
4. Tse E, Kwong YL. The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol. 2017 Apr 14;10(1):85. http://dx.doi.org/10.1186/s13045-017-0452-9
5. Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, Zhang X, Xu B, Qian WB, Tao R, Yan F, Hu JD, Hou M, Ma XJ, Wang X, Liu YH, Zhu ZM, Huang XB, Liu L, Wu CY, Huang L, Shen YF, Huang RB, Xu JY, Wang C, Wu DP, Yu L, Li JF, Xu PP, Wang L, Huang JY, Chen SJ, Zhao WL. Genomic and Transcriptomic Characterization of Natural Killer T Cell Lymphoma. Cancer Cell. 2020 Mar 16;37(3):403-419 e406. http://dx.doi.org/10.1016/j.ccell.2020.02.005
6. Allen PB, Lechowicz MJ. Management of NK/T-Cell Lymphoma, Nasal Type. J Oncol Pract. 2019 Oct;15(10):513-520. http://dx.doi.org/10.1200/JOP.18.00719
7. Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor kappaB and Mitogen-Activated Protein Kinase Pathways. Front Immunol. 2018 9(1849. http://dx.doi.org/10.3389/fimmu.2018.01849
8. Masperone L, Codrich M, Persichetti F, Gustincich S, Zucchelli S, Legname G. The E3 Ubiquitin Ligase TRAF6 Interacts with the Cellular Prion Protein and Modulates Its Solubility and Recruitment to Cytoplasmic p62/SQSTM1-Positive Aggresome-Like Structures. Mol Neurobiol. 2022 Mar;59(3):1577-1588. http://dx.doi.org/10.1007/s12035-021-02666-6
9. Wang J, Wu X, Jiang M, Tai G. Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. Biomed Res Int. 2020 2020(4607197. http://dx.doi.org/10.1155/2020/4607197
10. Li J, Liu N, Tang L, Yan B, Chen X, Zhang J, Peng C. The relationship between TRAF6 and tumors. Cancer Cell Int. 2020 20(429. http://dx.doi.org/10.1186/s12935-020-01517-z
11. Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y, Yu J. Regulation of Human Natural Killer Cell IFN-gamma Production by MicroRNA-146a via Targeting the NF-kappaB Signaling Pathway. Front Immunol. 2018 9(293. http://dx.doi.org/10.3389/fimmu.2018.00293
12. Lan P, Fan Y, Zhao Y, Lou X, Monsour HP, Zhang X, Choi Y, Dou Y, Ishii N, Ghobrial RM, Xiao X, Li XC. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest. 2017 Jun 1;127(6):2222-2234. http://dx.doi.org/10.1172/JCI91075
13. Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kim CW. MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res. 2011 Jul 15;17(14):4761-4771. http://dx.doi.org/10.1158/1078-0432.CCR-11-0494
14. Wu CH, Yang YH, Chen MR, Tsai CH, Cheng AL, Doong SL. Autocleavage of the paracaspase MALT1 at Arg-781 attenuates NF-kappaB signaling and regulates the growth of activated B-cell like diffuse large B-cell lymphoma cells. PLoS One. 2018 13(6):e0199779. http://dx.doi.org/10.1371/journal.pone.0199779
15. Qu C, Kunkalla K, Vaghefi A, Frederiksen JK, Liu Y, Chapman JR, Blonska M, Bernal-Mizrachi L, Alderuccio JP, Lossos IS, Landgraf R, Vega F. Smoothened stabilizes and protects TRAF6 from degradation: A novel non-canonical role of smoothened with implications in lymphoma biology. Cancer Lett. 2018 Nov 1;436(149-158. http://dx.doi.org/10.1016/j.canlet.2018.08.020
16. Li Y, Lv Y, Wang J, Zhu X, Chen J, Zhang W, Wang C, Jiang L. LncRNA NORAD Mediates the Proliferation and Apoptosis of Diffuse Large-B-Cell Lymphoma via Regulation of miR-345-3p/TRAF6 Axis. Arch Med Res. 2022 Apr;53(3):271-279. http://dx.doi.org/10.1016/j.arcmed.2022.01.004
17. Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol. 2018 Aug;101(80-93. http://dx.doi.org/10.1016/j.biocel.2018.06.001
18. Wu H, Lu XX, Wang JR, Yang TY, Li XM, He XS, Li Y, Ye WL, Wu Y, Gan WJ, Guo PD, Li JM. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/beta-catenin degradation and is targeted for GSK3B/GSK3beta-mediated phosphorylation and degradation. Autophagy. 2019 Sep;15(9):1506-1522. http://dx.doi.org/10.1080/15548627.2019.1586250
19. Wen F, Sun X, Sun C, Dong Z, Jia G, Bao W, Yu H, Yang C. TAGLN Is Downregulated by TRAF6-Mediated Proteasomal Degradation in Prostate Cancer Cells. Mol Cancer Res. 2021 Jul;19(7):1113-1122. http://dx.doi.org/10.1158/1541-7786.MCR-20-0513
20. Song G, Zhang Y, Tian J, Ma J, Yin K, Xu H, Wang S. TRAF6 Regulates the Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Tumor-Bearing Host. Front Immunol. 2021 12(649020. http://dx.doi.org/10.3389/fimmu.2021.649020
21. Taha Z, Janse van Rensburg HJ, Yang X. The Hippo Pathway: Immunity and Cancer. Cancers (Basel). 2018 Mar 28;10(4)http://dx.doi.org/10.3390/cancers10040094
22. Li JA, Kuang T, Pu N, Fang Y, Han X, Zhang L, Xu X, Wu W, Wang D, Lou W, Rong Y. TRAF6 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer. Clin Exp Med. 2019 May;19(2):211-218. http://dx.doi.org/10.1007/s10238-018-00543-6
23. Chang Y, Fu XR, Cui M, Li WM, Zhang L, Li X, Li L, Sun ZC, Zhang XD, Li ZM, You XY, Nan FF, Wu JJ, Wang XH, Zhang MZ. Activated hippo signal pathway inhibits cell proliferation and promotes apoptosis in NK/T cell lymphoma cells. Cancer Med. 2019 Jul;8(8):3892-3904. http://dx.doi.org/10.1002/cam4.2174
24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-408. http://dx.doi.org/10.1006/meth.2001.1262
25. Kucuk C, Wang J, Xiang Y, You H. Epigenetic aberrations in natural killer/T-cell lymphoma: diagnostic, prognostic and therapeutic implications. Ther Adv Med Oncol. 2020 12(1758835919900856. http://dx.doi.org/10.1177/1758835919900856
26. Rosebeck S, Lim MS, Elenitoba-Johnson KS, McAllister-Lucas LM, Lucas PC. API2-MALT1 oncoprotein promotes lymphomagenesis via unique program of substrate ubiquitination and proteolysis. World J Biol Chem. 2016 Feb 26;7(1):128-137. http://dx.doi.org/10.4331/wjbc.v7.i1.128
27. Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets. 2020 20(4):240-252. http://dx.doi.org/10.2174/1568009620666200115162814
28. Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio. 2021 Oct 26;12(5):e0109721. http://dx.doi.org/10.1128/mBio.01097-21
29. Wang L, Howell MEA, McPeak B, Riggs K, Kohne C, Yohanon JU, Foxler DE, Sharp TV, Moorman JP, Yao ZQ, Ning S. LIMD1 is induced by and required for LMP1 signaling, and protects EBV-transformed cells from DNA damage-induced cell death. Oncotarget. 2018 Jan 19;9(5):6282-6297. http://dx.doi.org/10.18632/oncotarget.23676
30. Dai YH, Hung LY, Chen RY, Lai CH, Chang KC. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016 Sep;175(129-143 e113. http://dx.doi.org/10.1016/j.trsl.2016.04.001
31. Roh KH, Lee Y, Yoon JH, Lee D, Kim E, Park E, Lee IY, Kim TS, Song HK, Shin J, Lim DS, Choi EJ. TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-kappaB signaling pathway in macrophages. Cell Mol Life Sci. 2021 Mar;78(5):2315-2328. http://dx.doi.org/10.1007/s00018-020-03650-4
32. Wang GN, Zhao WG, Zhang XD, Jian XY, Zhang CL, Zhang MZ, Li WC. A retrospective study on the clinicopathological and molecular features of 22 cases of natural killer/T-cell lymphoma in children and adolescents. Sci Rep. 2022 May 3;12(1):7118. http://dx.doi.org/10.1038/s41598-022-11247-z
33. Kim TS, Lee DH, Kim SK, Shin SY, Seo EJ, Lim DS. Mammalian sterile 20-like kinase 1 suppresses lymphoma development by promoting faithful chromosome segregation. Cancer Res. 2012 Oct 15;72(20):5386-5395. http://dx.doi.org/10.1158/0008-5472.CAN-11-3956
34. Fu H, Zhou H, Qiu Y, Wang J, Ma Z, Li H, Zhang F, Qiu C, Shen J, Liu T. SEPT6_TRIM33 Gene Fusion and Mutated TP53 Pathway Associate With Unfavorable Prognosis in Patients With B-Cell Lymphomas. Front Oncol. 2021 11(765544. http://dx.doi.org/10.3389/fonc.2021.765544
35. Wang Y, Jia A, Cao Y, Hu X, Wang Y, Yang Q, Bi Y, Liu G. Hippo Kinases MST1/2 Regulate Immune Cell Functions in Cancer, Infection, and Autoimmune Diseases. Crit Rev Eukaryot Gene Expr. 2020 30(5):427-442. http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2020035775
36. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010 Oct 19;19(4):491-505. http://dx.doi.org/10.1016/j.devcel.2010.09.011
37. Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, Wang L, Chen J, Quan M. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis. Mol Cancer Res. 2019 Jun;17(6):1316-1325. http://dx.doi.org/10.1158/1541-7786.MCR-18-0910
38. Jin X, Zhu L, Xiao S, Cui Z, Tang J, Yu J, Xie M. MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker. Mol Med Rep. 2021 May;23(5)http://dx.doi.org/10.3892/mmr.2021.12022
