OUTLINE OF IRON METABOLISM, WITH EMPHASIS TO ERYTHROID CELLS iron Metabolism

Main Article Content

Ugo Testa
Elvira Pelosi
Germana Castelli

Keywords

Iron; Ferritin; Ferroportin; DMT1; Hepcidin

Abstract

Iron is required for several vital biological processes in all human cells. In mammals, a considerable number of proteins are involved in iron metabolism and utilize iron in many essential cellular processes, such as oxygen transport, mitochondrial respiration, gene regulation and DNA synthesis or repair. Iron metabolism is a complex system finely regulated at both systemic and cellular levels. It involves the development of specialized mechanisms for iron absorption, transport, recycling, storage and export, and protection against toxic compounds that can be generated during iron redox cycling in the presence of oxygen.


The erythropoietic compartment consumes the majority of iron to support the high demand for hemoglobin synthesis. A tightly regulated system enables efficient iron uptake by erythroid cells and its subsequent processing for the synthesis of large amounts of heme, which is then incorporated into hemoglobin. A bidirectional regulatory system between erythropoiesis and iron metabolism ensures precise coordination between the two processes. This regulation is often disrupted in various anemic conditions.


Keywords : Iron; Ferritin; Ferroportin; DMT1; Hepcidin

Downloads

Download data is not yet available.


Abstract 57
PDF Downloads 17
Html Downloads 7

References

References
1. Comprubi E, Jordan SF, Vasiliadou R, Lane N. Iron catalysis at the origin of life. IUBMB Life 2017; 69: 373-381.
2. Ganz T. Systemic iron homeostasis. Physiol Rev 2013; 93: 1721-1741.
3. Correnti, M.; Gammella, E.; Cairo, G.; Recalcati, S. Iron absorption: molecular and pathophysiological aspects. Metabolites 2024; 14, 228.
4. Gunshin, H.; Fujiwara, Y.; Custodio, A.O.; Direnzo, C.; Robine, S.; Andrews, N.C. Slc11a2 is required form intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 2005; 115, 1258-1266.
5. Heoda J, Shah A, Zhang L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 2014; 6: 1080-1102.
6. Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H, et al. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab 2023; 35, 1057-1071.
7. Pan, Y.; Ron, Z.; Gao, S.; Shen, J.; Wang, L.; Xu, Z.; Yu, Y.; Bachina, P.; Zhang, H.; Pan, X.; et al. Structural basis of iron transport and inhibition in ferroportin. Nat Commun 2020, 11, 5686.
8. Donovan AS.; Lima, C.A.; Pinkus, J.L.; Pinkus, G.S.; Zon, L.I.; Robine, S.; Andrews, N.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005, 1, 191-200.
9. Balusikova, K.; Dustalikova-Cimburova, M.; Tachechi, I.; Kovar, J. Expression profiles of iron transport molecules along the duodenum. J Cell Mol Med 2022, 26, 2995-3004.
10. Nemeth, E.; Ganz, T. Hepcidin and iron in health and disease. Ann Rev Med 2023, 74, 261-277.
11. Drakesmith, H.; Nemeth, E.; Ganz, T. Ironing out ferroportin. Cell Metab 2015, 22, 777-787.
12. Mastrogiannaki M, Matak P, Keith B, Simon C, Vauloint S, Peyssonnaux C. HIF-2, promotes iron absorption in mice. J Clin Invest 2019, 119, 1159-1166.
13. Schwartz A, Das NK, Ramakrishnan S, Jain C, Jurkovitch MT, Mu J, Nemeth E, Lakhal-Littleton S, Colacino JA, Shah YM. Hepatic hepcidin/intestinal HIF-2 axis maintains iron absorption during iron deficiency and overload. J Clin Invest 2019,; 129, 336-348.
14. Zhang, D.L.; Hughes, R.M.; Ollivierre-Wilson, H.; Ghosh, M.C.; Rouault, T.A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab 20’09, 9, 461-473.
15. Recalcati, S.; Cairo, G. Macrophages and iron: a special relationship. Biomedicines 2024, 9, 1585.
16. Korolnek, T.; Hamza, I. Macrophages and iron trafficking at the birth and death of red cells. Blood 2015, 125, 2893-2897.
17. Zhang Z, Zhang F, An P, Guo X, Shen Y, Tao Y, Wu Q, Zhang Y, Yu Y, Ning B, et al. Ferroportin 1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 2011; 118: 1912-1922.
18. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 2005; 102: 1324-1328.
19. DSi Rumo SC, Check IJ, Hunter RL. Quantitation of apo-, mono-, and differric transferrin by polyacrylamide gradient electrophoresis in patients with disorders of iron metabolism. Blood 1985; 66: 1445-1451.
20. Sposi NM, Cianetti L, Tritarelli E, Pelosi E, Militi S, Barberi T, Gabbianelli M, Saulle E, Kuhn L, Peschle C, Testa U. Mechanisms of differential transferrin receptor expression in normal hematopoiesis. Eur J Biochem 2000; 267: 6762-6774.
21. Nai A, Lindonnici MR, Rausa M. The second transferrin receptor regulates red blood cell production in mice. Blood 2015; 125: 1170-1179.
22. West AP, Bennett MJ, Sellers VM, Andrews NC, Enns CA, Bjorkman PJ. Comparison of the interactions of transferrin receptor 1 and transferrin receptor 2 with transferrin and the hereditary hemochromatosis HFE. J Biol Chem 2000; 275: 38135-38138.
23. Riedel HD, Muckenthaler MU, Gehrke SG, Mohr I, Brennan K, Herrmann T, Fitscher BA, Hentze MW, Stremmel W. HFE downregulates iron uptake from transferrin and induces iron-regulatory protein activity in stably transfected cells. Blood 1999; 94: 3915-3921.
24. Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, Garcia-Santos D, Ponka P, Presle J, Pantopoulos K. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood 2019; 133: 344-355.
25. Wallace DF, Summerville L, Subramaniam VN, Targeted disruption of the hepatic transferrin receptor 2 gene in mice leads to iron overload. Gastroenterology 2007; 132: 301-310.
26. Xiao X, Moschetta GA, Xu Y, Fisher AL, Alfaro-Magallanes VM, Dev S, Wang CY, Babitt JL. Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to hepcidin suppression in -thalassemia. Blood 2023; 141: 422-431.
27. Levy JE, Jin D, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and nervous system. Nat Genet 1999; 21: 396-399.
28. Wang S, He X, Wu Q, Jiang L, Chen L, Yu Y, Zhang P, Huang X, Wang J, et al. Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica 2020; 105: 2071-2082.
29. Das A, Nag S, Mason AB, Barroso MM. Endosome-mitochondria interactions are modulated by iron release from transferrin. J Cell Biol 2016; 214: 831-845.
30. Hamdi A, Roshan TM, Kahawita TM, Mason AB, Sheftel AD, Ponka P. Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism. Biochim Biophys Acta 2016; 1863: 2859-2867.
31. Aronova MA, Noh SJ, Zhang G, Byrne C, Meier ER, Kim YC, Meier ER, Leapman R. User of dual-electron probes reveals the role of ferritin as an iron depot in ex vivo erythropoiesis. iScience 2021; 24: 102901.
32. Harigae H, Suwabe N, Weinsock PH, Nagai M, Fiujita H, Yamamoto M. Deficient heme and globin synthesis in embryonic stem cells lacking the erythroid-specific delta-aminolevulinate synthase gene. Blood 1998; 91: 798-805.
33. Kaneko K, Furuyama K, Fujiwara T, Kobayashi R, Ishida H, Hariagae H. Identification of the novel erythroid-specific enhancer for ALAS2 gene and its loss-of-function mutation associated with congenital sideroblastic anemia. Haematologica 2014; 99: 252-261.
34. Surinya KH, Cox TC, May BK. Identification and characterization of a conserved erythroid-specific enhancer located in intron 8 of the human 5-aminolevulinate synthase 2 gene. J Biol Chem 1998; 273: 16798-16809.
35. Kramer MF; Gunaratne P, Ferreira GC. Transcriptional regulation of the erythroid-specific 5-aminolevulinate synthase gene. Gene 2000; 247: 153-166.
36. Obi CD, Dailey HA, Jam-Alahmedi Y, Wohlschgel JA, Medlock AE. Proteome analysis of ferrochelatase interactome in erythroid and non-erythroid cells. Life 2023; 13: 577.
37. Doty RT, Phelps RT, Shadle C, Sanchez-Bonilla M, Kael SB, Abkowitz JL. Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest 2015; 125: 4681-4691.
38. Mercurio S, Petrillo S, Chiabrando D, Bassi ZI, Gays D, Camporeale A, Vacaru A, Miniscalco B, Valperga G, Silengo L, et al. The heme exporter FLVCR1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica 2015; 100: 720-729.
39. Ryu MS, Zhang D, Protchenko O, Shakavry-Elizeh M, Phipott CC. PCBP1 and NCO4 regulate erythroid iron storage and heme biosynthesis. J Clin Invest 2017; 127: 1786-1797.
40. Ji X, Jha A, Humenik J, Ghanem LR, Kromer A, Duncan-Lewis C, Tarxler E, Weiss MJ, Barash Y, Leibhader SA. RNA-binding proteins PCBP1 and PCBP2 are critical determinants of murine erythropoiesis. Mol Cell Biol 2021; 41: e00668-20.
41. Nai A, Liddonici MR, Artuso I, Federico G, Mandelli G, Ferrari G, Camaschella C, Carlomagno F, Silvestri L. The macrophage nuclear receptor coactivator 4 counteracts iron-deficiency anemia. Blood 2017; 130 (suppl.1): 224.
42. Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood 2006; 108: 3730-3735.
43. Sasaki Y, Noguchi-Sasaki M, Yasuno H, Yorozu K, Shimonaka Y. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice. Int J Hematol 2012; 96: 692-700.
44. Gammella E, Diaz V, Recalcati S, Buratti P, Sanoya M, Day S, Noguchi C, Gasmann M, Cairo G. Erythropoietin,s inhibiting impact on hepcidin expression occurs indirectly. Am J Physiol Integr Com Physiol 2015; 308: R330-R335.
45. Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Rev 2006; 55: 667-674.
46. Kautz I, Jung G, Valore EV, Rivella S, Nometh E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 2014; 46: 678-684.
47. Srole DN, Ganz T. Erythroferrone structure, functions, and physiology: iron homeostasis and beyond. J Cell Physiol 2021; 236: 4888-4901.
48. Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood 2014; 124: 479-482.
49. Wang CYY, Core AB, Canali S, Zumbrennen-Bullough KB, Ozer S, Umans L, Zwijsen A, Babill JL. Smad 1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood 2017; 130: 73-83.
50. Azeres J, Foy N, McHigh K, Sawant A, Quinker D, Terraube V, Brinth A, Tam M, LaVallie ER, Taylor S, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 2018; 132: 1473-1477.
51. Azeres J, Foy N, McHigh K, Quinkert D, Benard S, Sawant A, Frost JN, Armitage AE, Pasricha SR, Lim PJ, et al. Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood 2020; 135: 547-557.
52. Srole DN, Jung G, Waring AJ, Nemeth E, Ganz T. Characterization of erythoferrone structural domains relevant to its iron-regulatory function. J Biol Chem 2023; 299: 105374.
53. Coffey R, Jung G, Olivera JD, Karin G, Pereira RC, Nemeth E, Ganz T. Erythroid overproduction of erythroferrone causes iron overload and developmental abnormalities in mice. Blood 2022; 139: 439-449.
54. Phatthalung PN, Ginburg Y, van Caloen G, Planoutene M, Gumerova AA, Witztum R, Ingber E, Sultana F, Korkzmaz F, Levy M, et al. Osteoblast-derived erythroferrone regulates stress erythropoiesis. Blood 2024; 144(suppl.1): 2470.
55. Xu P, Wong R, Yan X. Early erythroferrone levels can predict the long-term haemoglobin responses to erythropoiesis-stimulating agents. Br J Pharmacol 2024; 1871: 2833-2850.
56. Busti F, Zidanes AL, Bertolone L, Martinelli N, Castagna A, March G, Vianello A, Bozzini C, Pramstaller P, Girelli D. Serum erythroferrone levels in a large population: towards better understanding of connections between erythropoiesis and homeostasis. Blood 2023; 42(suppl.1): 1096-1097.
57. Sardo U, Perrier P, Cormier K, Sotin M, Personnaz J, Medjbeur T, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, et al. The hepatokine FGL1 regulates hepcidin and iron metabolism during anemia in mice by antagonizing BMP signaling Blood 2024; 143: 1282-1290.
58. Forejtnikova H, Viellvoey M, Zermati Y, Lambert M, Pellegrino RM, Guihard S, Gaudry M, Camaschella C, Lacombe C, Roetto A, et al. Transferrin receptor 2 is a component of the erythropoietic complex and is required for efficient erythropoiesis. Blood 2010; 116: 5357-5367.
59. Fouquet G, Thongsaad U, Lefevre C, Rousseau A, Tanhaud N, Khongkla E, Saengsawang W, Anurathapan U, Haugeng S, Maciel TT, et al. Iron-loaded transferrin potentiates erythropoietin effects on erythroblast proliferation and survival: a novel role through transferrin receptors. Exp Hematol 2021; 99: 12-20.
60. Artuso I, Liddonici MR, Altamura S, Mandelli G, Pettinato M. Muckenthaler M, Silvestri L, Ferrari G, Camaschella C, Nai A. Transferrin receptor 2 is a potential novel therapeutic target for -thalassemia: evidence from a murine model. Blood 2018; 132: 2287-2296.
61. Wortham AM, Goldman DC, Chen J, Fleming WH, Enns CA. Extrahepatic deficiency of transferrin receptor 2 is associated with increased erythropoiesis independent of iron overload. J Biol Chem 2020; 215: 3906-3917.
62. Khalil S, Holy M, Grado S, Fleming R, Kurita R, Nakamura Y, Goldfarb A. A specialized pathway for erythroid delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv 2017; 1: 1181-1190.
63. Khalil S, Delehanty L, Grado S, Holyy M, White III Z, Freeman K, Kurita R, Nakamura Y, Bullock G, Goldfarb A. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med 2018; 215: 661-679.
64. Pagani A, Villevoyye M, NMai A, Rausa M, Ladli M, Lacombe C, Mayeux P, Verdier F, Camaschella C. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica 2015; 100: 458-465.
65. Guerra A, Sharma P, An X, Parrow NL, Fleming R, Ginzburg Y, Rivella S. TFR2 coordinates erythroid iron availability and erythropoietin receptor sensitivity by monoferric transferrin forms. Blood 2024; 144(suppl.1): 2468-2469.
66. Camaschella C, Pagani A, Silvestri L, Nai A. The mutual crosstalk between iron and erythropoiesis. Int J Hematol 2022; 116: 182-191.
67. Yoshinaga M, Nakatsuka Y, Vandenbon A, Ori D, Uehata T, Tsujimura T, Suzuki Y, Mino T, Takeuchi O. Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Rep 2017; 19: 1614-1630.
68. Corral VM, Schultz ER, Eisenstein RS; Connell GJ. Roquin is a major mediator of iron-regulated changes of transferrin receptor-1 stability. iScience 2021; 24: 102360.
69. Wang H, Shi H, Rajan M, Canarie ER, Hong S, Simoneschi D, Pagano M, Bush MF, Stoll S, Leibold EA, et al. FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2FE2S] cluster. Mol Cell 2020; 78: 38-41e5.
70. Rouault TA, Maio N. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem 2017; 292: 12744-12753.
71. Ward DM, Cloonan SM. Mitochondrial iron in human health and disease. Annu Rev physiol 2019; 81: 453-482.
72. Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakaayma KI. The FXBL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab 2011; 14: 339-351.
73. Wilkinson N, Pantopoulos K. The IRP/IRE system in viìvo: insights from mouse models. Front Pharmacol 2014; 5: 176.
74. De Santos MCF, Anderson CP, Nechen S, Zumbrennen-Bullough KB, Romney SJ, Kahle-Stepohan M, Rathkolb B, Gailus-Darner V, Fuchs H, Wolf E, et al. IRP2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun 2020; 11: 296.
75. Wilkinson N, Pantopoulos K. IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2 mRNA translation. Blood 2013; 122: 1658-1668.
76. Zhang DL, Ollivierre H, Qi CF, Rouault TA. A bulge uridine IRE allows IRP1 but not IRP2 to selectively regulate HIF2 expression and ensuing EPO levels. Blood 2025; 145: 533-542.
77. Meyron-Holtz EG, Ghosh MC, Rouault TA. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 2004; 306: 2087-2090.
78. Peissonnaux C, Nizet V, Johnson RS. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle 2008; 7: 28-32.
79. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif-2 results in anemia. Proc Natl Acad Sci USA 2007; 104: 23012-2306.
80. Kragesteen B, Giladi A, David E, Halevi S, Geisdottir L, Lempke O, Li B, Bapst AM, Xie K, Katzenelenbogen Y, et al. The transcriptional and regulatory identity of erythropoietic producing cells. Nat Med 2023; 29: 1191-1200.
81. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 2009; 9: 152-164.
82. Taylor M, Qu A, Anderson ER. Hypoxia-inducible factor HIF-2 mediates the adoptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 2011; 140: 2044-2055.
83. Anderson SA, Nizzi CP, Chang YI. The IRP1-HIF-2 axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab 2013; 17: 282-290.
84. Liu Q, Davidoff O, Niss K, Haase VH. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 2012; 122: 4635-4644.
85. Silvestri L. Ironing erythroid cells takes FGL1 and ERFE to tango. Blood 2024; 143: 1208-1209.
86. Nemeth E, Tuttle MS, Powelson J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-2093.
87. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by induing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004; 113: 1271-1276.
88. Armitage AE, Eddowes LA, Gileadi U, Cole S, Spottiswood N, Selvakumar TA, Ho LP, Towsend A, Drakesmith H. Hepcidin regulation by immune and infectious stimuli. Blood 2011; 118: 4129-4139.
89. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 2005; 106: 1864-1866.
90. Kim A, Fung E, Parikh SG, Valore EV, Gabayan V, Nemeth E, Ganz T. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood 2014; 123: 1129-1136.
91. Stefanova D, Raychev A, Arezes J, Ruchala P, Gabayan V, Skurnik M, Dillon BJ, Horwitz MA, Ganz T, Bulut Y, Nemeth E. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood 2017; 130: 245-257.
92. Ganz T. Anemia of inflammation. N Engl J Med 2017; 381: 1148-1157.
93. Sangkhae V, Ganz T, Nemeth E. Maternal hepcidin suppression is essential for healthy pregnancy. Blood 2020 136 (suppl.1): 43-44.
94. Sangkhae V, Fisher AL, Chua KJ, Ganz T, Nemeth E. Maternal hepcidin determines embryo iron homeostasis in mice. Blood 2020; 136: 2206-2216.