FASTING PLASMA GLUCOSE LEVELS WITHIN THE HIGH NORMAL RANGE ARE ASSOCIATED WITH A SIGNIFICANTLY INCREASED RISK OF FUTURE DYSGLYCEMIA IN TRANSFUSION-DEPENDENT Β THALASSEMIA: A DECADE-LONG MULTICENTER RETROSPECTIVE ANALYSIS Higher normal fasting plasma glucose and glucose dysregulation in β- thalassemia
Main Article Content
Keywords
Transfusion-dependent β-thalassemia, higher normal fasting plasma glucose, glucose dysregulation, fasting plasma glucose trajectories, risk factors, long-term follow-up
Abstract
Abstract. Objective: To evaluate the risk of developing glucose dysregulation and diabetes mellitus over a 10-year period among transfusion-dependent β-thalassemia (β-TDT) patients with varying levels of fasting plasma glucose (FPG) within the normoglycemic range.
Setting: The study included β-TDT patients followed from January 2014 to January 2025 in three thalassemia canters; Tehran and Shiraz in Iran, and Ferrara in Italy.
Participants: A total of 238 β-TDT patients (age range: 10–41.9 years; 96 males and 142 females) were included.
Results: At baseline, the mean fasting plasma glucose (FPG) level was 88.0 ± 8.3 mg/dL (median: 90 mg/dL), and the mean serum ferritin (SF) level was 2,080 ± 2,072 µg/L (median: 1,368 µg/L). The mean alanine aminotransferase (ALT) level, available in 201/238 patients, was 29.0 ± 25.8 IU/L. β-TDT patients were categorized into three subgroups according to the conversion of FPG during the 10 year follow up [Group A: 93/238 β-TDT patients with persistent normal FPG according to ADA criteria; Group B: 67/238 patients developed persistent impaired fasting glucose (IFG), and Group C: 78/238 patients developed thalassemia-related diabetes mellitus (Th-RDM)]. Notably, 64.1% and 76.9 of patients with FPG at baseline ≥ 90 mg/dl and < 100 mg/dL developed impaired fasting glucose (Group B) and Th-RDM (Group C), respectively. To determine the optimal cutoff for the risk of progressing to impaired fasting glucose (IFG) and Th-RDM at 10-year follow-up, ROC curve analyses and respective areas under the curve were analyzed. The FPG cutoff value for optimal specificity and sensitivity was established at 87.5 mg/dL. Contributing factors associated with the progression to prediabetes and Th-RDM included: older age, gender (females), positive family history of type 1 or type 2 diabetes, lower pre-transfusion hemoglobin levels, severity of iron overload, and elevated liver enzyme levels.
Conclusions: Higher FPG levels within the normoglycemic range in β-TDT patients are associated with a greater risk for future glucose dysregulation and diabetes. Close monitoring and timely intervention in these high-risk individuals should be considered in order to reduce the burden of hyperglycemia in this population.
Downloads
Abstract 40
PDF Downloads 7
Html Downloads 9
References
1. Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. Effect of enhanced iron chelation therapy on glucose metabolism in patients with beta-thalassaemia major. Br J Haematol. 2006; 134:438-444. https://doi.org/10.1111/j.1365-2141.2006.06203.x.
2.Azami M, Sharifi A, Norozi S, Mansouri A, Sayehmiri K. Prevalence of diabetes, impaired fasting glucose and impaired glucose tolerance in patients with thalassemia major in Iran: A meta-analysis study. Caspian J Intern Med. 2017; 8 (1):1–15.PMID: 28503277.
3. De Sanctis V, Soliman A, Tzoulis P, Daar S, Kattamis A, Delaporta P, Yassin MA, Karimi M, Canatan D, Al Jaouni S, Galati MC, Raiola G, Messina G, Campisi S, Saki F, Kottahachchi D, Kaleva V, Petrova K, Banchev A, Kattamis C. The Prevalence of glucose dysregulations (GDs) in patients with β-thalassemias in different countries: A preliminary ICET-A survey. Acta Biomed. 2021;92(3):e2021240. https://doi.org/10.23750/abm.v92i3.11733.
4. He LN, Chen W, Yang Y, Xie YJ, Xiong ZY, Chen DY, Lu D, Liu NQ, YangYH, Sun XF. Elevated prevalence of abnormal glucose metabolism and other endocrine disorders in patients with β-thalassemia major: A meta-analysis. Biomed Res Int. 2019; 2019:6573497.https://doi.org/10.1155/2019/6573497.
5. World Health Organization [WHO]. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. Geneva: World Health Organization, 2006.
6. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34 (Suppl. 1):S62–69. https://doi.org/10.2337/dc11-S062.
7. De Sanctis V, Canatan D, Daar S, Kattamis C, Banchev A, Modeva I, Savvidou I, Christou S, Kattamis A, Delaporta P, Kostaridou-Nikolopoulou S, Karimi M, Saki F, Faranoush M, Campisi S, Fortugno C, Gigliotti F, Wali Y, Al Yaarubi S, Yassin MA, Soliman AT, Kottahachchi D, Kurtoğlu E, Gorar S,Turkkahraman D, Unal S, Oymak Y,Tuncel AD, Karakas Z, Gül N, Yildiz M, Elhakim I, Tzoulis P. A multicenter ICET-A survey on adherence to annual oral glucose tolerance test (OGTT) screening in transfusion-dependent thalassemia (TDT) patients -The expert clinicians’ opinion on factors influencing the adherence and on alternative strategies for adhension optimization. Mediterr J Hematol Infect Dis.2025:17 (1); e2025008; https://doi.org/10.4084/MJHID.2025.008.
8. Thakkinstian A, Anothaisintawee T. Chaiyakunapruk N. Comparison of diagnostic accuracy for diabetes diagnosis: A systematic review and network meta-analysis. Front Med.2023;10:1016381. https://doi.org/ 10.3389/ fmed.2023.1016381.
9. Faranoush P, Elahinia A, Ziaee A, Faranoush M. Review of endocrine complications in transfusion-dependent thalassemia. Iranian J Blood Cancer. 2023;15(4):212-235. http://ijbc.ir/article-1-1401-en.html
10. Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat T, Kochba I, Rudich A; Israeli Diabetes Research Group. Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med.2005;353(14):1454-1462. https://doi.org/10.1056/NEJMoa050080.. Erratum in: N Engl J Med. 2006;354(22):2401.
11. Ko GT, Chan JC, Woo J, Lau E, Yeung VT, Chow CC, Cockram CS. The reproducibility and usefulness of the oral glucose tolerance test in screening for diabetes and other cardiovascular risk factors. Ann Clin Biochem. 1998 Jan;35 ( Pt 1):62-67. https://doi.org/10.1177/000456329803500107.
12.Nguyen QM, Srinivasan SR, Xu JH, Chen W, Berenson GS. Fasting plasma glucose levels within the normoglycemic range in childhood as a predictor of prediabetes and type 2 diabetes in adulthood: the Bogalusa Heart Study. Arch Pediatr Adolesc Med. 2010;164 (2):124–128. https://doi.org/ 10.1001/ archpediatrics. 2009.268.
13. Munekawa C, Okada H, Hamaguchi M, Habu M, Kurogi K, Murata H, Ito M, Fukui M. Fasting plasma glucose level in the range of 90-99 mg/dL and the risk of the onset of type 2 diabetes: Population-based Panasonic cohort study 2. J Diabetes Investig. 2022;13(3):453-459. https://doi.org/10.1111/jdi.13692.
14. Han Y, Zhang S, Chen S, Zhang J, Guo X, Yang X. Incidence and risk factors of type 2 diabetes mellitus in individuals with different fasting plasma glucose levels. Ther Adv Endocrinol Metab. 2020;11:1-9. https://doi.org/10. 1177/2042018820928844.
15. Noetzli LJ, Mittelmanm SD, Watanabe RM, Coates TD, Wood JC. Pancreatic iron and glucose dysregulation in thalassemia major. Am J Hematol. 2012; 87 (2):155-160. https://doi.org/10.1002/ajh.22223.
16. Center for Disease Control and Prevention. Use and interpretation of the WHO and CDC growth charts for children from birth to 20 years in the United States 2014. Available online: https://www.cdc. gov/ nccdp hp/dnpa/growth charts/resources/ growthchart.pdf (accessed on 1 February 2023).
17. Fulwood R, Johnson CL, Bryner JD. Hematological and nutritional biochemistry reference data for persons 6 months–74 years of age: United States, 1976–1980. National Center for Health Statistics, Vital Health Stat Series.1982;11: p.1–173.
18. American Diabetes Association. Professional Practice Committee Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48 (Suppl.1):S27–S49. https://doi.org/10. 2337/dc25-S002.
19. Daniel WW. Biostatistics: A foundation for analysis in the health sciences. John Wiley and Sons Inc. 6th Edition. New York (USA), 1995.
20. Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia International Federation guidelines for the management of transfusion-dependent thalassemia. Hemasphere. 2022;6 (8):e732. https://doi.org/10.1097/HS9.0000000000000732.
21. De Sanctis V, Soliman AT, Elsedfy H, AL Yaarubi S, Skordis N, Khater D, El Kholy M, Stoeva I, Fiscina B, Angastiniotis M, Daar S, Kattamis C. The ICET-A recommendations for the diagnosis and management of disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis. 2016; 8 (1):e2016058. https://doi.org/10.4084/mjhid.2016.058.
22. Khamseh EM, Malek M, Hashemi-madani N, Ghassemi F, Rahimian N, Ziaee A,Foroughi-Gilvaee MR, Faranoush P, Sadighnia N, Elahinia A, Rezvany MR, Saeedi V, Faranoush M . Guideline for the diagnosis and treatment of diabetes mellitus in patients with transfusion-dependent thalassemia. Iran J Blood Cancer. 2023;15(4):293-303.https://doi.org/ not available.
23. The Italian Data Protection Authority. Authorisation no. 9/2014—General authorisation to process personal data for scientific research purposes. Available online: https://www.garanteprivacy.it/ web/ guest/ home/ docweb/-/docweb-display/docweb/3786078 (accessed on 1 July 2023).
24. Hoyer A, Rathmann W, Kuss O. Utility of HbA1c and fasting plasma glucose for screening of Type 2 diabetes: a meta-analysis of full ROC curves. Diabet Med. 2018;35(3):317–322. https://doi.org/ 10.1111/ dme.13560.
25. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Karimi M, Di Maio S, Kattamis C. Screening for glucose dysregulation in β-thalassemia major (β-TM): An update of current evidences and personal experience. Acta Biomed. 2022;93(1):e2022158. https://doi.org/10.23750/ abm.v93i1. 12802. Correction: Acta Biomed. 2024;95 (6):e2024187.https://doi.org/10.23750/ abm. v95i6. 16688.
26. De Sanctis V, Soliman AT, Daar S, Tzoulis P, Di Maio S, Kattamis C. Oral glucose tolerance test: how to maximize its diagnostic value in children and adolescents. Acta Biomed. 2022; 93(5): e2022318. https://doi.org/10.23750/abm.v93i5.13615.
27.Tfayli H, Lee S, Arslanian S. Declining beta cell function relative to insulin sensitivity with increasing fasting glucose levels in the nondiabetic range in children. Diabetes Care. 2010; 33(9): 2024–230. https://doi.org/10.2337/dc09-2292.
28. Jagannathan R, Neves JS, Dorcely B, Chung ST, Tamura K, Rhee M, Bergman M. The Oral Glucose Tolerance Test: 100 Years Later. Diabetes Metab Syndr Obes. 2020;13:3787-3805. https://doi.org/10.2147/DMSO.S246062.
29. Pepe A, Pistoia L, Gamberini MR, Cuccia L, Peluso A, Messina G, Spasiano A, Allò M, Bisconte MG, Putti MC, Casini T, Dello Iacono N, Celli M, Vitucci A, Giuliano P, Peritore G, Renne S, Righi R, Positano V, De Sanctis V, Meloni A. The Close Link of Pancreatic Iron With Glucose Metabolism and With Cardiac Complications in Thalassemia Major: A Large, Multicenter Observational Study. Diabetes Care. 2020; 43 (11):2830-2839. https://doi.org/10.2337/dc20-0908
30. Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S, Abel ED, Winge DR, McClain DA. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med. 2008;14(3-4):98-108. https://doi.org/10.2119/2007-00114.Jouihan.
31. Jin EJ, Jo Y, Wei S, Rizzo M, Ryu D, Gariani K. Ferroptosis and iron metabolism in diabetes: Pathogenesis, associated complications, and therapeutic implications. Front Endocrinol. 2024;15:1447148. https://doi.org/10.3389/fendo.2024.1447148 .
32. Rujito L, Fauziyah F, Azizah EF, et al. Scanning SNPs of diabetes mellitus related genes; HNF4A, PTPN, KCNJ11, PPAR gamma among thalassemia patients: a preliminary study. IOP Conf. Series: Earth and Environment Sci.2019;255:012008. https://doi.org/10.1088/1755-1315/255 /1/012008.
